Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Гармоническое движение и движение по окружности



Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движении неоткуда взяться окружности: грузик движется строго вверх и вниз. Можно оправдаться тем, что мы уже решили уравнение гармонического движения, когда изуча­ли механику движения по окружности. Если частица движется по окружности с постоянной скоростью v, то радиус-вектор из центра окружности к частице поворачивается на угол, величина которого пропорциональна времени. Обозначим этот угол q=vt/R (фиг. 21.2).


 

Фиг. 21.2. Частица, движу­щаяся по кругу с постоянной скоростью.

 

Тогда dq/dt=w0=v/R. Известно, что ускоре­ние а=v2/R=w20R и направлено к центру. Координаты движу­щейся точки в заданный момент равны

х=Rcosq, y=Rsinq.

Что можно сказать об ускорении? Чему равна x-составляющая ускорения, d2x/dt2. Найти эту величину можно чисто гео­метрически: она равна величине ускорения, умноженной на ко­синус угла проекции; перед полученным выражением надо пос­тавить знак минус, потому что ускорение направлено к центру:

ах=-acosq=-wRcosq=-w20х. (21.7)

Иными словами, когда частица движется по окружности, гори­зонтальная составляющая движения имеет ускорение, пропор­циональное горизонтальному смещению от центра. Конечно, мы знаем решения для случая движения по окружности: x=Rcosw0t. Уравнение (21.7) не содержит радиуса окружности; оно оди­наково при движении по любой окружности при одинаковой w0.

Таким образом, имеется несколько причин, по которым следует ожидать, что отклонение грузика на пружинке окажется пропор­циональным cosw0t и движение будет выглядеть так, как если бы мы следили за x-координатой частицы, движущейся по окружно­сти с угловой скоростью w0 . Проверить это можно, поставив опыт, чтобы показать, что движение грузика вверх-вниз на пружинке в точности соответствует движению точки по окружности. На фиг. 21.3 свет дуговой лампы проектирует на экран тени дви­жущихся рядом воткнутой во вращающийся диск иголки и вер­тикально колеблющегося груза.


Фиг. 21.3. Демонстрация экви­валентности простого гармони­ческого движения и равномерного движения по окружности.

 

Если вовремя и с нужного места заставить грузик колебаться, а потом осторожно подобрать скорость движения диска так, чтобы частоты их движений сов­пали, тени на экране будут точно следовать одна за другой. Вот еще способ убедиться в том, что, находя численное реше­ние, мы почти вплотную подошли к косинусу.

Здесь можно подчеркнуть, что поскольку математика равно­мерного движения по окружности очень сходна с математикой колебательного движения вверх-вниз, то анализ колебатель­ных движений очень упростится, если представить это движе­ние как проекцию движения по окружности. Иначе говоря, мы можем дополнить уравнение (21.2), казалось бы, совершенно лишним уравнением для у и рассматривать оба уравнения совместно. Проделав это, мы сведем одномерные колебания к движению по окружности, что избавит нас от решения дифферен­циального уравнения. Можно сделать еще один трюк — ввести комплексные числа, но об этом в следующей главе.

Начальные условия

Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка растянуть пружинку, а потом ударить по грузику — другой. Постоянные А и В или а и D, или какие-нибудь две другие постоянные определяются обстоятельствами, при которых началось движение, или, как обычно говорят, начальными условиями. Нужно научиться определять постоян­ные, исходя из начальных условий. Хотя для этого можно использовать любое из соотношений (21.6), лучше всего иметь дело с (21.6в). Пусть в начальный момент t=0 грузик смещен от положения равновесия на величину х0 и имеет скорость v0. Это самая общая ситуация, какую только можно придумать. (Нельзя задать начального ускорения, потому что оно зависит от свойств пружины; мы можем распорядиться только величи­ной х0.) Вычислим теперь А и В. Начнем с уравнения для

х=Acoswot+Bsinw0t;

поскольку нам понадобится и скорость, продифференцируем х и получим

v=-w0Asinw0t+w0Bcosw0t.

Эти выражения справедливы для всех t, но у нас есть допол­нительные сведения о величинах х и v при t=0. Таким образом, если положить t=0, мы должны получить слева х0 и v0, ибо это то, во что превращаются х и v при t=0. Кроме того, мы знаем, что косинус нуля равен единице, а синус нуля равен нулю. Следовательно,

х01+В0=А

и

vu=-w0A•0+w0B•1=w0B.

Таким образом, в этом частном случае

А=х0, В=v0/w0.

Зная А и В, мы можем, если пожелаем, найти а и D.

Итак, задача о движении осциллятора решена, но есть одна интересная вещь, которую надо проверить. Надо выяснить, сохраняется ли энергия. Если нет сил трения, то энергия долж­на сохраняться. Сейчас нам удобно использовать формулы

х=acos(wot+D) и v=-w0asin(w0t+D).

Давайте найдем кинетическую энергию Т и потенциальную энергию U. Потенциальная энергия в произвольный момент времени равна 1/2kx2, где х — смещение, a k — постоянная упругости пружинки. Подставляя вместо х написанное выше выражение, найдем

U=1/2kx2=1/2ka2cos2 (w0t+D).

Разумеется, потенциальная энергия зависит от времени; она всегда положительна, это тоже понятно: ведь потенциальная энергия — это энергия пружины, а она изменяется вместе с х. Кинетическая энергия равна 1/2mv2; используя выражение для v, получаем

Т = 1/2mv2=1/2mw20a2sin2(w0t+D).

Кинетическая энергия равна нулю при максимальном х, ибо в этом случае грузик останавливается; когда же грузик прохо­дит положение равновесия (x=0), то кинетическая энергия до­стигает максимума, потому что именно тогда грузик движется быстрее всего. Изменение кинетической энергии, таким обра­зом, противоположно изменению потенциальной энергии. Пол­ная энергия должна быть постоянной. Действительно, если вспомнить, что k=mw20, то

T+U=1/2mw20а2 [cos2 (w0t+D)+sin2 (w0t+D)] =1/2rnw20a2.

Энергия зависит от квадрата амплитуды: если увеличить амп­литуду колебания вдвое, то энергия возрастет вчетверо. Средняя потенциальная энергия равна половине максимальной и, сле­довательно, половине полной; средняя кинетическая энергия также равна половине полной энергии.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.