Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Приближенное вычисление иррациональных чисел



Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10Ö2 . Ответ в принципе очень прост. Возьмем вместо Ö2 его прибли­жение в виде конечной десятичной дроби — это рациональное число. Возводить в рациональную степень мы умеем; дело сво­дится к возведению в целую степень и извлечению корня. Мы получим приближенное значение числа 10Ö2 . Можно взять десятичную дробь подлиннее (это снова рациональное число). Тогда придется извлечь корень большей степени; ведь знамена­тель рациональной дроби увеличится, но зато мы получим бо­лее точное приближение. Конечно, если взять приближенное значение Ö2 в виде очень длинной дроби, то возведение в сте­пень будет делом очень трудным. Как справиться с этой задачей?

Вычисление квадратных корней, кубичных корней и других корней невысокой степени — вполне доступный нам арифмети­ческий процесс; вычисляя, мы последовательно, один за дру­гим, пишем знаки десятичной дроби. Но для того, чтобы воз­вести в иррациональную степень или взять логарифм (решить обратную задачу), нужен такой труд, что применить прежнюю процедуру уже не просто. На помощь приходят таблицы. Их называют таблицами логарифмов или таблицами степеней, смотря по тому, для чего они предназначены. Они экономят время: чтобы возвести число в иррациональную степень, мы не вычисляем, а только перелистываем страницы.

Хотя вычисление собранных в таблицы значений — проце­дура чисто техническая, а все же дело это интересное и имеет большую историю. Поэтому посмотрим, как это делается. Мы

вычислим не только x=10 V2 , но решим и другую задачу: 10x=2, или x=log102. При решении этих задач мы не откроем новых чисел; это просто вычислительные задачи. Решением будут иррациональные числа, бесконечные десятичные дроби, а их как-то неудобно объявлять новым видом чисел.

Подумаем, как решить наши уравнения. Общая идея очень проста. Если вычислить 101 и 101/10, и 101/100, и 101/1000, и т. д., а затем перемножить результаты, то мы получим 101,414..., или 10 Ö2 . Поступая так, мы решим любую задачу такого рода. Од­нако вместо 101/10 и т. д. мы будем вычислять 101/2, 101/4 и т. д. Прежде чем начинать вычисления, объясним еще, почему мы об­ращаемся к числу 10 чаще, чем к другим числам. Мы знаем, что значение таблиц логарифмов выходит далеко за рамки математи­ческой задачи вычисления корней, потому что

logb(ac)= logba+logbc. (22.3)

Это хорошо известно всем, кто пользовался таблицей логариф­мов, чтобы перемножить числа. По какому же основанию b брать логарифмы? Это безразлично; ведь в основу таких вычис­лений положен только принцип, общее свойство логарифмиче­ской функции. Вычислив логарифмы один раз по какому-ни­будь произвольному основанию, можно перейти к логарифмам по другому основанию при помощи умножения. Если умножить уравнение (22.3) на 61, то оно останется верным, поэтому если перемножить все числа в таблице логарифмов по основанию b на 61, то можно будет пользоваться и такой таблицей. Предпо­ложим, что нам известны логарифмы всех чисел по основанию b. Иначе говоря, можно решить уравнение bадля любого с; для этого существует таблица. Задача состоит в том, как найти логарифм этого же числа с по другому основанию, например х. Нам нужно решить уравнение ха'=с. Это легко сделать, пото­му что х всегда можно представить так: x=bt. Найти t, зная х и b, просто: t=logbx. Подставим теперь х=bt в уравнение xa' =с; оно перейдет в такое уравнение: (bt)а'=bta'=с. Иными словами, произведение ta' есть логарифм с по основанию b. Значит, a'=a/t. Таким образом, логарифмы по основанию х равны произведениям логарифмов по основанию bна по­стоянное число 1/t. Следовательно, все таблицы логарифмов эквивалентны с точностью до умножения на число 1/logbx. Это позволяет нам выбрать для составления таблиц любое осно­вание, но мы решили, что удобнее всего взять за основание число 10. (Может возникнуть вопрос: не существует ли все-таки какого-нибудь естественного основания, при котором все выглядит как-то проще? Мы попытаемся ответить на этот вопрос позднее. Пока все логарифмы будут вычисляться по ос­нованию 10.)

Теперь посмотрим, как составляют таблицу логарифмов. Работа начинается с последовательных извлечений квадрат­ного корня из 10. Результат можно увидеть в табл. 22.1. Показатели степеней записаны в ее первом столбце, а числа 10S— в третьем. Ясно, что 101=10. Возвести 10 в половинную степень легко — это квадратный корень из 10, а как извлекать квадратный корень из любого числа, знает каждый. Итак, мы нашли первый квадратный корень; он равен 3,16228. Что это дает? Кое-что дает.

Таблица 22.1 • последовательные извлечения

КВАДРАТНОГО КОРНЯ ИЗ 10

 


 

Мы уже можем сказать, чему равно 100,5, и знаем по крайней мере один логарифм. Логарифм числа 3,16228 очень близок к 0,50000. Однако нужно еще приложить неболь­шие усилия: нам нужна более подробная таблица. Извлечем еще один квадратный корень и найдем 101/4,что равно 1,77828. Теперь мы знаем еще один логарифм: 1,250— это логарифм числа 17,78; кроме того, мы можем сказать, чему равно 100,75: ведь это 10(0,5+0,25), т. е. произведение второго и третьего чисел из третьего столбца табл. 22.1. Если сделать первый столбец таблицы достаточно длинным, то таблица будет содержать поч­ти все числа; перемножая числа из третьего столбца, мы полу­чаем 10 почти в любой степени. Такова основная идея таблиц. В нашей таблице содержится десять последовательных корней из 10; основной труд по составлению таблицы вложен в вычис­ления этих корней.

Почему же мы не продолжаем повышать точность таблиц дальше? Потому что мы кое-что уже подметили. Возведя 10 в очень малую степень, мы получаем единицу с малой добавкой. Это, конечно, происходит потому, что если возвести, например, 101/1000 в 1000-ю степень, то мы снова получим 10; ясно, что `01/1000 не может быть большим числом: оно очень близко к еди­нице. Более того, малые добавки к единице ведут себя так, буд­то их каждый раз делят на 2; поглядите-ка на таблицу повни­мательнее: 1815 переходит в 903, потом в 450, 225 и т. д. Таким образом, если вычислить еще один, одиннадцатый, квадратный корень, он с большой точностью будет равен 1,00112, и этот результат мы угадали еще до вычисления. Можно ли сказать, какова будет добавка к единице, если возвести 10 в степень D/1024, когда D стремится к нулю? Можно. Добавка будет приблизительно равна 0,0022511D. Конечно, не в точности 0,0022511 D; чтобы вычислить эту добавку поточнее, делают та­кой трюк: вычитают из 10S единицу и делят разность на показа­тель степени s. Отклонения полученного таким образом част­ного от его точного значения одинаковы для любой степени s. Видно, что эти отношения (см. четвертый столбец табл. 22.1) примерно равны. Сначала они все-таки сильно отличаются друг от друга, но потом все ближе подходят друг к другу, явно стремясь к какому-то числу. Что это за число? Проследим, как меняются числа четвертого столбца, если опускаться вниз по столбцу. Сначала разность двух соседних чисел равна 0,0211, потом 0,0104, потом 0,0053 и, наконец, 0,0026. Разность каждый раз убывает наполовину. Сделав еще один шаг, мы доведем ее до 0,0013, потом до 0,0007, 0,0003, 0,0002 и, наконец, примерно до 0,0001; надо последовательно делить 26 на 2. Таким обра­зом, мы спустимся еще на 26 единиц и найдем для предела

2.3025. (Позднее мы увидим, что правильнее было бы взять

2.3026. но давайте возьмем то, что у нас получилось.) Пользуясь этой таблицей, можно возвести 10 в любую степень, если ее показатель каким угодно способом выражается через 1/1024. Теперь легко составить таблицу логарифмов, потому что все необходимое для этого мы уже припасли. Процедура этого изо­бражена в табл. 22.2, а нужные числа берутся из второго и третьего столбцов табл. 22.1.

Таблица 22.2 • ВЫЧИСЛЕНИЯ log102


Предположим, что мы хотим знать логарифм 2. Это значит, что мы хотим знать, в какую степень надо возвести 10, чтобы получить 2. Может быть, возвести 10 в степень 1/2? Нет, полу­чится слишком большое число. Глядя на табл. 22.1, можно ска­зать, что нужное нам число лежит между 1/4 и 1/2. Поиск его начнем с 1/4;разделим 2 на 1,788..., получится 1,124...; при де­лении мы отняли от логарифма двух 0,250000, и теперь нас интересует логарифм 1,124.... Отыскав его, мы прибавим к результату 1/4=256/1024. Найдем в табл. 22.1 число, которое бы при движении по третьему столбцу сверху вниз стояло сразу за 1,124... . Это 1,074607. Отношение 1,124... к 1,074607 равно 1,046598. В конце концов мы представим 2 в виде произведения чисел из табл. 22.1:

2=(1,77828)•(1,074607)•(1,036633) • (1,0090350)•(1,000573).

Для последнего множителя (1,000573) в нашей таблице места не нашлось; чтобы найти его логарифм, надо представить это число в виде 10D/1024»1+2,3025D/1024. Отсюда легко найти, что D=0,254. Таким образом, наше произведение мож­но представить в виде десятки, возведенной в степень 1/1024 (256+32+16+4+0,254). Складывая и деля, мы полу­чаем нужный логарифм: log102=0,30103; этот результат верен до пятого десятичного знака!

Мы вычисляли логарифмы точно так же, как это делал мистер Бриггс из Галифакса в 1620 г. Закончив работу, он сказал: «Я вычислил последовательно 54 квадратных корня из 10». На самом деле он вычислил только 27 первых корней, а потом сделал фокус с D. Вычислить 27 раз квадратный корень из 10, вообще-то говоря, немного сложнее, чем 10 раз, как это сделали мы. Однако мистер Бриггс сделал гораздо большее: он вычислял корни с точностью до шестнадцатого десятичного знака, а когда опубликовал свои таблицы, то оставил в них лишь 14 десятичных знаков, чтобы округлить ошибки. Соста­вить таблицы логарифмов с точностью до четырнадцатого деся­тичного знака таким методом — дело очень трудное. Зато це­лых 300 лет спустя составители таблиц логарифмов занимались тем, что уменьшали таблицы мистера Бриггса, выкидывая из них каждый раз разное число десятичных знаков. Только в последнее время при помощи электронных вычислительных ма­шин оказалось возможным составить таблицы логарифмов не­зависимо от мистера Бриггса. При этом использовался более эффективный метод вычислений, основанный на разложении логарифма в ряд.

Составляя таблицы, мы натолкнулись на интересный факт: если показатель степени e очень мал, то очень легко вычислить 10e; это просто 1+2,3025е. Это значит, что 10n/2,3025 =1+n для очень малых n. Кроме того, мы говорили с самого начала, что вычисляем логарифмы по основанию 10 только потому, что у нас на руках 10 пальцев и по десяткам нам считать удобнее. Логарифмы по любому другому основанию получаются из ло­гарифмов по основанию 10 простым умножением. Теперь на­стало время выяснить, не существует ли математически выде­ленного основания логарифмов, выделенного по причинам, не имеющим ничего общего с числом пальцев на руке. В этой есте­ственной шкале формулы с логарифмами должны выглядеть проще. Составим новую таблицу логарифмов, умножив все логарифмы по основанию 10 на 2,3025.... Это соответствует пере­ходу к новому основанию — натуральному, или основанию е. Заметим, что loge (l+n)»n или еn»1+n, когда n®0.

Легко найти само число е; оно равно 101/2,3025 или 100,434294... Это 10 в иррациональной степени. Для вычисления е можно воспользоваться таблицей корней из 10. Представим 0,434294... сначала в виде 444,73/1024, а числитель этой дроби в виде суммы 444,73=256+128+32+16+2+0,73. Число е поэтому равно произведению чисел

(1,77828)•(1,33352)•(1,074607)•(1,036633)•(1,018152)X(1,009035)(1,001643) =2,7184.

(Числа 0,73 нет в нашей таблице, но соответствующий ему ре­зультат можно представить в виде 1+2,3025D и вычислить, чему равна D.) Перемножив все 7 сомножителей, мы получим 2,7184 (на самом деле должно быть 2,7183, но и этот результат хорош). Используя такие таблицы, можно возводить число в иррациональную степень и вычислять логарифмы иррацио­нальных чисел. Вот как надо обращаться с иррациональностями.

Комплексные числа

Хотя мы хорошо поработали, все-таки есть еще уравнения, которые нам не под силу! Например, чему равен квадратный ко­рень из -1? Предположим, что это х, тогда х2=-1. Нет ни ра­ционального, ни иррационального числа, квадрат которого был бы равен -1. Придется снова пополнить запас чисел. Предполо­жим, что уравнение х2=-1 все же имеет решение, и обозначим это решение буквой i; число i имеет пока только одно свойство: будучи возведенным в квадрат, оно дает -1. Вот пока и все, что можно о нем сказать. Однако уравнение х2=-1 имеет два корня. Буквой i мы обозначили один из корней, но кто-нибудь может сказать: «А я предпочитаю иметь дело с корнем -i; моя буква i просто минус ваша i». Возразить ему нечего, пото­му что число i определяется соотношением i2=-1; это соотно­шение останется верным, если изменить знак i. Значит, любое уравнение, содержащее какое-то количество i, останется вер­ным, если сменить знаки у всех i. Такая операция называется комплексным сопряжением. Далее, ничто не мешает нам полу­чать новые числа вот так: сложить i несколько раз, умножить i на какое-нибудь наше старое число, прибавить результат умно­жения к старому числу и т. д. Все это можно сделать, не на­рушая ранее установленных правил. Таким образом мы при­ходим к числам, которые можно записать в виде p+iq, где pи q — числа, с которыми мы имели дело ранее, их называют действительными числами. Число i называют мнимой единицей, а произведение действительного числа на мнимую единицу — чисто мнимым числом. Самое общее число а имеет вид a=p+iq, и его называют комплексным числом. Обращаться с комплекс­ными числами несложно; например, нам надо вычислить произ­ведение (r+is)(p+q). Вспомнив о правилах, мы получим

(r+is)(p+iq)=rp+r(iq)+(is)p+(is)(iq)=rp+i(rq)+i(sp)+(ii)(sq)=(rp-sq)+i(rq+sp), (22.4)

потому что ii=i2=-1. Теперь мы получили общее выражение для чисел, удовлетворяющих правилам (22.1).

Умудренные опытом, полученным в предыдущих разделах, вы скажете: «Рано говорить об общем выражении, надо еще оп­ределить, например, возведение в мнимую степень, а потом мож­но придумать много алгебраических уравнений, ну хотя бы x6+3x2=-2, для решения которых потребуются новые числа». В том-то и дело, что, кроме действительных чисел, достаточно изобрести только одно число — квадратный корень из -1, после этого можно решить любое алгебраическое уравнение! Эту удивительную вещь должны доказывать уже математики. Дока­зательство очень красиво, очень интересно, но далеко не само­очевидно. Действительно, казалось бы, естественнее всего ожи­дать, что по мере продвижения в дебри алгебраических уравнений придется изобретать снова, снова и снова. Но самое чудесное, что больше ничего не надо изобретать. Это последнее изобре­тение. Изобретя комплексные числа, мы установим правила, по которым с этими числами надо обращаться, и больше ничего изобретать не будем. Мы научимся возводить комплексные числа в комплексную степень и выражать решение любого алгебраи­ческого уравнения в виде конечной комбинации уже известных нам символов. К новым числам это не приведет. Например, квадратный корень из i, или ii— опять те же комплексные числа. Сейчас мы рассмотрим это подробнее.

Мы уже знаем, как надо складывать и умножать комплекс­ные числа; сумма двух комплексных чисел (р+iq)+(r+is) — это число (p+r)+i(q+s). Но вот возведение комплексных чисел в комплексную степень — уже задача потруднее. Однако она оказывается не труднее задачи о возведении в комплексную сте­пень действительных чисел. Посмотрим поэтому, как возводит­ся в комплексную степень число 10, не в иррациональную, а комплексную; нам надо знать число 10(r+is). Правила (22.1) и (22.2) несколько упрощают задачу

10(r+is)=10r10is (22,5)

Мы знаем, как вычислить 10r, перемножить числа мы тоже умеем, не умеем только вычислить 10is. Предположим, что это комплексное число x+iy. Задача: дано s, найти х и у. Если

10is=x+ iy,

то должно быть верным и комплексно сопряженное уравнение

l0-is=x-iy,

(Некоторые вещи можно получить и без вычислений, надо про­сто использовать правила.) Перемножая эти равенства, можно получить еще один интересный результат

10is10-is=100=1=(x+iy)(x-iy)=x2+y2 (22.6)

Если мы каким-то образом найдем х, то определить у будет очень легко.

Однако как все-таки возвести 10 в мнимую степень? Где искать помощи? Правила нам уже не помогут, но утешает вот что: если удастся возвести 10 в какую-нибудь одну мнимую степень, то ничего не стоит возвести 10 уже в любую степень. Если из­вестно 10is для одного значения s, то вычисление в случае вдвое большего s сводится к возведению в квадрат и т. д. Но как же возвести 10 в хотя бы одну мнимую степень? Для этого сделаем дополнительное предположение; его, конечно, нельзя ставить в один ряд с правилами (22.1) и (22.2), но оно приведет к разумным результатам и позволит нам шагнуть далеко впе­ред. Предположим, что «закон» 10e=1+2,3025e (когда e очень мало) верен не только для действительных, но и для комплекс­ных e. Если это так, то 10is=l +2,3025•is при s®0. Предполагая, что s очень мало (скажем, равно 1/1024), мы получаем хорошее приближение числа 10is.

Теперь можно составить таблицу, которая позволит вычис­лить все мнимые степени 10, т. е. найти числа x и y. Надо посту­пить так. Начнем с показателя 1/1024, который мы считаем равным примерно 1+2,3025 i/1024. Тогда

10i/1024=1,00000+0,0022486i. (22.7)

Умножая это число само на себя много раз, мы дойдем до сте­пеней более высоких. Мы просто-напросто перевернули про­цедуру составления таблицы логарифмов и, вычислив квадрат, 4-ю степень, 8-ю степень и т. д. числа (22.7), составили табл. 22.3. Интересно, что сначала все числа х были положительными, а потом вдруг появилось отрицательное число. Это значит, что существует число s, для которого действительная часть 10is равна нулю. Значение у в этом случае равно i, т. е. 10is=i, или is=log10i. В качестве примера (см. табл. 22..3) вычислим с ее помощью Iog10i. Процедура поиска Iog10i в точности повторяет то, что мы делали, вычисляя log102.

Произведение каких чисел из табл. 22.3 равно чисто мнимому числу? После нескольких проб и ошибок мы найдем, что лучше всего умножить «512» на «128». Их произведение равно 0,13056+0,99144i. Приглядевшись к правилу умножения ком­плексных чисел, можно понять, что надежду на успех сулит ум­ножение этого числа на число, мнимая часть которого прибли­зительно равна действительной части нашего числа. Мнимая часть «64» равна 0,14349, что довольно близко к 0,13056. Произведение этих чисел равно -0,01350+0,99993i. Мы пе­рескочили через нуль, поэтому результат нужно разделить на 0,99996+0,00900 i. Как это сделать? Изменим знак i и умно­жим на 0,99996-0,00900 i (ведь x2+y2=1). В конце концов обнаружим, что если возвести 10 в степень i(1/1024) (512+128 + +64-4-2+0,20) или 698,20i/1024, то получится мнимая единица. Таким образом, Iog10i=0,068226i.

Таблица 22.3 • последовательное: вычисление квадратов

10i/1024 =1+0,0022486i

 

 


 


§ 6. Мнимые экспоненты

 

 

Фиг. 22.1. Вещественная и мнимая части функции 10is.

 

Чтобы лучше понять, что такое число в мнимой степени, вычислим последовательные степени десяти. Мы не будем каж­дый раз удваивать степень, чтобы не повторять табл. 22.3, и по­смотрим, что случится с действительной частью после того, как она станет отрицательной. Результат можно увидеть в табл. 22.4.

В этой таблице собраны последовательные произведения чис­ла 10i/8. Видно, что x уменьшается, проходит через нуль, дости­гает почти -1 (в промежутке между р=10 и р=11 величина точно равна -1) и возвращается назад. Точно так же величина у ходит взад-вперед.

Точки на фиг. 22.1 соответствуют числам, приведенным в табл. 22.4, а соединяющие их линии помогают следить за из­менением х и у. Видно, что числа х и у осциллируют; 10is повторяет себя. Легко объяснить, почему так происходит.

Таблица 22.4 • ПОСЛЕДОВАТЕЛЬНЫЕ ПРОИЗВЕДЕНИЯ ЧИСЛА 10i/8

 


Ведь i в четвертой степени — это i2 в квадрате. Это число равно единице; следовательно, если 100,68i равно i, то, возведя это число в четвертую степень, т. е. вычислив 102,72i, мы получим +1. Если нужно получить, например, 103,00i, то нужно умно­жить 102,72i на 100,28i. Иначе говоря, функция 10is повторяется, имеет период. Мы уже знаем, как выглядят такие кривые! Они похожи на график синуса или косинуса, и мы назовем их на время алгебраическим синусом и алгебраическим косинусом. Теперь перейдем от основания 10 к натуральному основанию. Это только изменит масштаб горизонтальной оси; мы обозначим 2,3025s через t и напишем 10is=eit, где t — действительное число. Известно, что eit=x+iy, и мы запишем это число в виде

eit=cost+isint. (22.8)

Каковы свойства алгебраического косинуса cost и алгебраи­ческого синуса sint? Прежде всего x2+y2=1; это мы уже до­казали, и это верно для любого основания, будь то 10 или е. Следовательно, cos2t+sin2t=l. Мы знаем, что eit=1+it для малых t; значит, если t — близкое к нулю число, то cost близок к единице, a sint близок к t. Продолжая дальше, мы придем к выводу, что все свойства этих замечательных функций, получаю­щихся в результате возведения в мнимую степень, в точности совпадают со свойствами тригонометрического синуса и триго­нометрического косинуса.

А как обстоит дело с периодом? Давайте найдем его. В ка­кую степень надо возвести е, чтобы получить i? Иными словами, чему равен логарифм i по основанию е? Мы вычислили уже ло­гарифм i по основанию 10; он равен 0,68226i; чтобы перейти к основанию е, мы умножим это число на 2,3025 и получим 1,5709. Это число можно назвать «алгебраическим p/2». Но по­глядите-ка, оно отличается от настоящего p/2 всего лишь послед­ним десятичным знаком, и это просто-напросто следствие на­ших приближений при вычислениях! Таким образом, чисто ал­гебраически возникли две новые функции — синус и косинус; они принадлежат алгебре и только алгебре. Мы пошли по их сле­дам и обнаружили, что это те же самые функции, которые так естественно возникают в геометрии. Мы отыскали мост между алгеброй и геометрией.

Подводя итог нашим поискам, мы напишем одну из самых замечательных формул математики

eiq=cosq+isinq. (22.9)

Вот она, наша жемчужина.

Связь между алгеброй и геометрией можно использовать для изображения комплексных чисел на плоскости; точка на плос­кости определяется координатами х и у (фиг. 22.2).

 

 


Фиг. 22.2. Комплексное число как точка на плоскости.

 

Представим каждое комплексное число в виде x+iy. Если расстояние точки от начала координат обозначить через r, а угол радиуса-вектора точки с осью xчерез q, то выражение x+iy можно представить в виде rei9. Это следует из геометрических соотношений между х, у, r и q. Таким образом, мы объединили алгебру и геометрию. Начиная эту главу, мы знали только целые числа и умели их считать. Зато у нас была небольшая идея о могуществе шага в сторону и обобщения. Используя алгебраические «законы», или свойства чисел, сведенные в уравнения (22.1), и определения обратных операций (22.2), мы смогли создать не только новые числа, но и такие полезные вещи, как таблицы логарифмов, степеней и тригонометрические функции (они возникли при возведении действительных чисел в мнимые степени), и все это удалось сделать, извлекая много раз квадратный корень из десяти!

 

 

* Квадратный корень лучше всего извлекать не тем способом, кото­рому обычно учат в школе, а немного иначе. Чтобы извлечь квадратный корень из числа N, выберем достаточно близкое к ответу число а, вы­числим N/a и среднее а'=1/2[а+(N/а)]; это среднее будет новым числом а, новым приближением корня из N. Этот процесс очень быстро приводит к цели: число значащих цифр удваивается после каждого шага.

 

 

Глава 23

РЕЗОНАНС

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.