Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10Ö2 . Ответ в принципе очень прост. Возьмем вместо Ö2 его приближение в виде конечной десятичной дроби — это рациональное число. Возводить в рациональную степень мы умеем; дело сводится к возведению в целую степень и извлечению корня. Мы получим приближенное значение числа 10Ö2 . Можно взять десятичную дробь подлиннее (это снова рациональное число). Тогда придется извлечь корень большей степени; ведь знаменатель рациональной дроби увеличится, но зато мы получим более точное приближение. Конечно, если взять приближенное значение Ö2 в виде очень длинной дроби, то возведение в степень будет делом очень трудным. Как справиться с этой задачей?
Вычисление квадратных корней, кубичных корней и других корней невысокой степени — вполне доступный нам арифметический процесс; вычисляя, мы последовательно, один за другим, пишем знаки десятичной дроби. Но для того, чтобы возвести в иррациональную степень или взять логарифм (решить обратную задачу), нужен такой труд, что применить прежнюю процедуру уже не просто. На помощь приходят таблицы. Их называют таблицами логарифмов или таблицами степеней, смотря по тому, для чего они предназначены. Они экономят время: чтобы возвести число в иррациональную степень, мы не вычисляем, а только перелистываем страницы.
Хотя вычисление собранных в таблицы значений — процедура чисто техническая, а все же дело это интересное и имеет большую историю. Поэтому посмотрим, как это делается. Мы
вычислим не только x=10 V2 , но решим и другую задачу: 10x=2, или x=log102. При решении этих задач мы не откроем новых чисел; это просто вычислительные задачи. Решением будут иррациональные числа, бесконечные десятичные дроби, а их как-то неудобно объявлять новым видом чисел.
Подумаем, как решить наши уравнения. Общая идея очень проста. Если вычислить 101 и 101/10, и 101/100, и 101/1000, и т. д., а затем перемножить результаты, то мы получим 101,414..., или 10 Ö2 . Поступая так, мы решим любую задачу такого рода. Однако вместо 101/10 и т. д. мы будем вычислять 101/2, 101/4 и т. д. Прежде чем начинать вычисления, объясним еще, почему мы обращаемся к числу 10 чаще, чем к другим числам. Мы знаем, что значение таблиц логарифмов выходит далеко за рамки математической задачи вычисления корней, потому что
logb(ac)= logba+logbc. (22.3)
Это хорошо известно всем, кто пользовался таблицей логарифмов, чтобы перемножить числа. По какому же основанию b брать логарифмы? Это безразлично; ведь в основу таких вычислений положен только принцип, общее свойство логарифмической функции. Вычислив логарифмы один раз по какому-нибудь произвольному основанию, можно перейти к логарифмам по другому основанию при помощи умножения. Если умножить уравнение (22.3) на 61, то оно останется верным, поэтому если перемножить все числа в таблице логарифмов по основанию b на 61, то можно будет пользоваться и такой таблицей. Предположим, что нам известны логарифмы всех чисел по основанию b. Иначе говоря, можно решить уравнение bа=с для любого с; для этого существует таблица. Задача состоит в том, как найти логарифм этого же числа с по другому основанию, например х. Нам нужно решить уравнение ха'=с. Это легко сделать, потому что х всегда можно представить так: x=bt. Найти t, зная х и b, просто: t=logbx. Подставим теперь х=btв уравнение xa' =с; оно перейдет в такое уравнение: (bt)а'=bta'=с. Иными словами, произведение ta' есть логарифм с по основанию b. Значит, a'=a/t. Таким образом, логарифмы по основанию х равны произведениям логарифмов по основанию bна постоянное число 1/t. Следовательно, все таблицы логарифмов эквивалентны с точностью до умножения на число 1/logbx. Это позволяет нам выбрать для составления таблиц любое основание, но мы решили, что удобнее всего взять за основание число 10. (Может возникнуть вопрос: не существует ли все-таки какого-нибудь естественного основания, при котором все выглядит как-то проще? Мы попытаемся ответить на этот вопрос позднее. Пока все логарифмы будут вычисляться по основанию 10.)
Теперь посмотрим, как составляют таблицу логарифмов. Работа начинается с последовательных извлечений квадратного корня из 10. Результат можно увидеть в табл. 22.1. Показатели степеней записаны в ее первом столбце, а числа 10S— в третьем. Ясно, что 101=10. Возвести 10 в половинную степень легко — это квадратный корень из 10, а как извлекать квадратный корень из любого числа, знает каждый. Итак, мы нашли первый квадратный корень; он равен 3,16228. Что это дает? Кое-что дает.
Таблица 22.1 • последовательные извлечения
КВАДРАТНОГО КОРНЯ ИЗ 10
Мы уже можем сказать, чему равно 100,5, и знаем по крайней мере один логарифм. Логарифм числа 3,16228 очень близок к 0,50000. Однако нужно еще приложить небольшие усилия: нам нужна более подробная таблица. Извлечем еще один квадратный корень и найдем 101/4,что равно 1,77828. Теперь мы знаем еще один логарифм: 1,250— это логарифм числа 17,78; кроме того, мы можем сказать, чему равно 100,75: ведь это 10(0,5+0,25), т. е. произведение второго и третьего чисел из третьего столбца табл. 22.1. Если сделать первый столбец таблицы достаточно длинным, то таблица будет содержать почти все числа; перемножая числа из третьего столбца, мы получаем 10 почти в любой степени. Такова основная идея таблиц. В нашей таблице содержится десять последовательных корней из 10; основной труд по составлению таблицы вложен в вычисления этих корней.
Почему же мы не продолжаем повышать точность таблиц дальше? Потому что мы кое-что уже подметили. Возведя 10 в очень малую степень, мы получаем единицу с малой добавкой. Это, конечно, происходит потому, что если возвести, например, 101/1000 в 1000-ю степень, то мы снова получим 10; ясно, что `01/1000 не может быть большим числом: оно очень близко к единице. Более того, малые добавки к единице ведут себя так, будто их каждый раз делят на 2; поглядите-ка на таблицу повнимательнее: 1815 переходит в 903, потом в 450, 225 и т. д. Таким образом, если вычислить еще один, одиннадцатый, квадратный корень, он с большой точностью будет равен 1,00112, и этот результат мы угадали еще до вычисления. Можно ли сказать, какова будет добавка к единице, если возвести 10 в степень D/1024, когда D стремится к нулю? Можно. Добавка будет приблизительно равна 0,0022511D. Конечно, не в точности 0,0022511 D; чтобы вычислить эту добавку поточнее, делают такой трюк: вычитают из 10Sединицу и делят разность на показатель степени s. Отклонения полученного таким образом частного от его точного значения одинаковы для любой степени s. Видно, что эти отношения (см. четвертый столбец табл. 22.1) примерно равны. Сначала они все-таки сильно отличаются друг от друга, но потом все ближе подходят друг к другу, явно стремясь к какому-то числу. Что это за число? Проследим, как меняются числа четвертого столбца, если опускаться вниз по столбцу. Сначала разность двух соседних чисел равна 0,0211, потом 0,0104, потом 0,0053 и, наконец, 0,0026. Разность каждый раз убывает наполовину. Сделав еще один шаг, мы доведем ее до 0,0013, потом до 0,0007, 0,0003, 0,0002 и, наконец, примерно до 0,0001; надо последовательно делить 26 на 2. Таким образом, мы спустимся еще на 26 единиц и найдем для предела
2.3025. (Позднее мы увидим, что правильнее было бы взять
2.3026. но давайте возьмем то, что у нас получилось.) Пользуясь этой таблицей, можно возвести 10 в любую степень, если ее показатель каким угодно способом выражается через 1/1024. Теперь легко составить таблицу логарифмов, потому что все необходимое для этого мы уже припасли. Процедура этого изображена в табл. 22.2, а нужные числа берутся из второго и третьего столбцов табл. 22.1.
Таблица 22.2 • ВЫЧИСЛЕНИЯ log102
Предположим, что мы хотим знать логарифм 2. Это значит, что мы хотим знать, в какую степень надо возвести 10, чтобы получить 2. Может быть, возвести 10 в степень 1/2? Нет, получится слишком большое число. Глядя на табл. 22.1, можно сказать, что нужное нам число лежит между 1/4 и 1/2. Поиск его начнем с 1/4;разделим 2 на 1,788..., получится 1,124...; при делении мы отняли от логарифма двух 0,250000, и теперь нас интересует логарифм 1,124.... Отыскав его, мы прибавим к результату 1/4=256/1024. Найдем в табл. 22.1 число, которое бы при движении по третьему столбцу сверху вниз стояло сразу за 1,124... . Это 1,074607. Отношение 1,124... к 1,074607 равно 1,046598. В конце концов мы представим 2 в виде произведения чисел из табл. 22.1:
Для последнего множителя (1,000573) в нашей таблице места не нашлось; чтобы найти его логарифм, надо представить это число в виде 10D/1024»1+2,3025D/1024. Отсюда легко найти, что D=0,254. Таким образом, наше произведение можно представить в виде десятки, возведенной в степень 1/1024 (256+32+16+4+0,254). Складывая и деля, мы получаем нужный логарифм: log102=0,30103; этот результат верен до пятого десятичного знака!
Мы вычисляли логарифмы точно так же, как это делал мистер Бриггс из Галифакса в 1620 г. Закончив работу, он сказал: «Я вычислил последовательно 54 квадратных корня из 10». На самом деле он вычислил только 27 первых корней, а потом сделал фокус с D. Вычислить 27 раз квадратный корень из 10, вообще-то говоря, немного сложнее, чем 10 раз, как это сделали мы. Однако мистер Бриггс сделал гораздо большее: он вычислял корни с точностью до шестнадцатого десятичного знака, а когда опубликовал свои таблицы, то оставил в них лишь 14 десятичных знаков, чтобы округлить ошибки. Составить таблицы логарифмов с точностью до четырнадцатого десятичного знака таким методом — дело очень трудное. Зато целых 300 лет спустя составители таблиц логарифмов занимались тем, что уменьшали таблицы мистера Бриггса, выкидывая из них каждый раз разное число десятичных знаков. Только в последнее время при помощи электронных вычислительных машин оказалось возможным составить таблицы логарифмов независимо от мистера Бриггса. При этом использовался более эффективный метод вычислений, основанный на разложении логарифма в ряд.
Составляя таблицы, мы натолкнулись на интересный факт: если показатель степени e очень мал, то очень легко вычислить 10e; это просто 1+2,3025е. Это значит, что 10n/2,3025 =1+n для очень малых n. Кроме того, мы говорили с самого начала, что вычисляем логарифмы по основанию 10 только потому, что у нас на руках 10 пальцев и по десяткам нам считать удобнее. Логарифмы по любому другому основанию получаются из логарифмов по основанию 10 простым умножением. Теперь настало время выяснить, не существует ли математически выделенного основания логарифмов, выделенного по причинам, не имеющим ничего общего с числом пальцев на руке. В этой естественной шкале формулы с логарифмами должны выглядеть проще. Составим новую таблицу логарифмов, умножив все логарифмы по основанию 10 на 2,3025.... Это соответствует переходу к новому основанию — натуральному, или основанию е. Заметим, что loge (l+n)»n или еn»1+n, когда n®0.
Легко найти само число е; оно равно 101/2,3025 или 100,434294... Это 10 в иррациональной степени. Для вычисления е можно воспользоваться таблицей корней из 10. Представим 0,434294... сначала в виде 444,73/1024, а числитель этой дроби в виде суммы 444,73=256+128+32+16+2+0,73. Число е поэтому равно произведению чисел
(Числа 0,73 нет в нашей таблице, но соответствующий ему результат можно представить в виде 1+2,3025D и вычислить, чему равна D.) Перемножив все 7 сомножителей, мы получим 2,7184 (на самом деле должно быть 2,7183, но и этот результат хорош). Используя такие таблицы, можно возводить число в иррациональную степень и вычислять логарифмы иррациональных чисел. Вот как надо обращаться с иррациональностями.
Комплексные числа
Хотя мы хорошо поработали, все-таки есть еще уравнения, которые нам не под силу! Например, чему равен квадратный корень из -1? Предположим, что это х, тогда х2=-1. Нет ни рационального, ни иррационального числа, квадрат которого был бы равен -1. Придется снова пополнить запас чисел. Предположим, что уравнение х2=-1 все же имеет решение, и обозначим это решение буквой i; число i имеет пока только одно свойство: будучи возведенным в квадрат, оно дает -1. Вот пока и все, что можно о нем сказать. Однако уравнение х2=-1 имеет два корня. Буквой i мы обозначили один из корней, но кто-нибудь может сказать: «А я предпочитаю иметь дело с корнем -i; моя буква i просто минус ваша i». Возразить ему нечего, потому что число i определяется соотношением i2=-1; это соотношение останется верным, если изменить знак i. Значит, любое уравнение, содержащее какое-то количество i, останется верным, если сменить знаки у всех i. Такая операция называется комплексным сопряжением. Далее, ничто не мешает нам получать новые числа вот так: сложить i несколько раз, умножить i на какое-нибудь наше старое число, прибавить результат умножения к старому числу и т. д. Все это можно сделать, не нарушая ранее установленных правил. Таким образом мы приходим к числам, которые можно записать в виде p+iq, где pи q — числа, с которыми мы имели дело ранее, их называют действительными числами. Число i называют мнимой единицей, а произведение действительного числа на мнимую единицу — чисто мнимым числом. Самое общее число а имеет вид a=p+iq, и его называют комплексным числом. Обращаться с комплексными числами несложно; например, нам надо вычислить произведение (r+is)(p+q). Вспомнив о правилах, мы получим
потому что ii=i2=-1. Теперь мы получили общее выражение для чисел, удовлетворяющих правилам (22.1).
Умудренные опытом, полученным в предыдущих разделах, вы скажете: «Рано говорить об общем выражении, надо еще определить, например, возведение в мнимую степень, а потом можно придумать много алгебраических уравнений, ну хотя бы x6+3x2=-2, для решения которых потребуются новые числа». В том-то и дело, что, кроме действительных чисел, достаточно изобрести только одно число — квадратный корень из -1, после этого можно решить любое алгебраическое уравнение! Эту удивительную вещь должны доказывать уже математики. Доказательство очень красиво, очень интересно, но далеко не самоочевидно. Действительно, казалось бы, естественнее всего ожидать, что по мере продвижения в дебри алгебраических уравнений придется изобретать снова, снова и снова. Но самое чудесное, что больше ничего не надо изобретать. Это последнее изобретение. Изобретя комплексные числа, мы установим правила, по которым с этими числами надо обращаться, и больше ничего изобретать не будем. Мы научимся возводить комплексные числа в комплексную степень и выражать решение любого алгебраического уравнения в виде конечной комбинации уже известных нам символов. К новым числам это не приведет. Например, квадратный корень из i, или ii— опять те же комплексные числа. Сейчас мы рассмотрим это подробнее.
Мы уже знаем, как надо складывать и умножать комплексные числа; сумма двух комплексных чисел (р+iq)+(r+is) — это число (p+r)+i(q+s). Но вот возведение комплексных чисел в комплексную степень — уже задача потруднее. Однако она оказывается не труднее задачи о возведении в комплексную степень действительных чисел. Посмотрим поэтому, как возводится в комплексную степень число 10, не в иррациональную, а комплексную; нам надо знать число 10(r+is). Правила (22.1) и (22.2) несколько упрощают задачу
10(r+is)=10r10is(22,5)
Мы знаем, как вычислить 10r, перемножить числа мы тоже умеем, не умеем только вычислить 10is. Предположим, что это комплексное число x+iy. Задача: дано s, найти х и у. Если
10is=x+ iy,
то должно быть верным и комплексно сопряженное уравнение
l0-is=x-iy,
(Некоторые вещи можно получить и без вычислений, надо просто использовать правила.) Перемножая эти равенства, можно получить еще один интересный результат
10is10-is=100=1=(x+iy)(x-iy)=x2+y2(22.6)
Если мы каким-то образом найдем х, то определить у будет очень легко.
Однако как все-таки возвести 10 в мнимую степень? Где искать помощи? Правила нам уже не помогут, но утешает вот что: если удастся возвести 10 в какую-нибудь одну мнимую степень, то ничего не стоит возвести 10 уже в любую степень. Если известно 10is для одного значения s, то вычисление в случае вдвое большего s сводится к возведению в квадрат и т. д. Но как же возвести 10 в хотя бы одну мнимую степень? Для этого сделаем дополнительное предположение; его, конечно, нельзя ставить в один ряд с правилами (22.1) и (22.2), но оно приведет к разумным результатам и позволит нам шагнуть далеко вперед. Предположим, что «закон» 10e=1+2,3025e (когда e очень мало) верен не только для действительных, но и для комплексных e. Если это так, то 10is=l +2,3025•is при s®0. Предполагая, что s очень мало (скажем, равно 1/1024), мы получаем хорошее приближение числа 10is.
Теперь можно составить таблицу, которая позволит вычислить все мнимые степени 10, т. е. найти числа x и y. Надо поступить так. Начнем с показателя 1/1024, который мы считаем равным примерно 1+2,3025 i/1024. Тогда
10i/1024=1,00000+0,0022486i. (22.7)
Умножая это число само на себя много раз, мы дойдем до степеней более высоких. Мы просто-напросто перевернули процедуру составления таблицы логарифмов и, вычислив квадрат, 4-ю степень, 8-ю степень и т. д. числа (22.7), составили табл. 22.3. Интересно, что сначала все числа х были положительными, а потом вдруг появилось отрицательное число. Это значит, что существует число s, для которого действительная часть 10isравна нулю. Значение у в этом случае равно i, т. е. 10is=i, или is=log10i. В качестве примера (см. табл. 22..3) вычислим с ее помощью Iog10i. Процедура поиска Iog10i в точности повторяет то, что мы делали, вычисляя log102.
Произведение каких чисел из табл. 22.3 равно чисто мнимому числу? После нескольких проб и ошибок мы найдем, что лучше всего умножить «512» на «128». Их произведение равно 0,13056+0,99144i. Приглядевшись к правилу умножения комплексных чисел, можно понять, что надежду на успех сулит умножение этого числа на число, мнимая часть которого приблизительно равна действительной части нашего числа. Мнимая часть «64» равна 0,14349, что довольно близко к 0,13056. Произведение этих чисел равно -0,01350+0,99993i. Мы перескочили через нуль, поэтому результат нужно разделить на 0,99996+0,00900 i. Как это сделать? Изменим знак i и умножим на 0,99996-0,00900 i (ведь x2+y2=1). В конце концов обнаружим, что если возвести 10 в степень i(1/1024) (512+128 + +64-4-2+0,20) или 698,20i/1024, то получится мнимая единица. Таким образом, Iog10i=0,068226i.
Фиг. 22.1. Вещественная и мнимая части функции 10is.
Чтобы лучше понять, что такое число в мнимой степени, вычислим последовательные степени десяти. Мы не будем каждый раз удваивать степень, чтобы не повторять табл. 22.3, и посмотрим, что случится с действительной частью после того, как она станет отрицательной. Результат можно увидеть в табл. 22.4.
В этой таблице собраны последовательные произведения числа 10i/8. Видно, что x уменьшается, проходит через нуль, достигает почти -1 (в промежутке между р=10 и р=11 величина точно равна -1) и возвращается назад. Точно так же величина у ходит взад-вперед.
Точки на фиг. 22.1 соответствуют числам, приведенным в табл. 22.4, а соединяющие их линии помогают следить за изменением х и у. Видно, что числа х и у осциллируют; 10isповторяет себя. Легко объяснить, почему так происходит.
Таблица 22.4 • ПОСЛЕДОВАТЕЛЬНЫЕ ПРОИЗВЕДЕНИЯ ЧИСЛА 10i/8
Ведь i в четвертой степени — это i2в квадрате. Это число равно единице; следовательно, если 100,68i равно i, то, возведя это число в четвертую степень, т. е. вычислив 102,72i, мы получим +1. Если нужно получить, например, 103,00i, то нужно умножить 102,72i на 100,28i. Иначе говоря, функция 10is повторяется, имеет период. Мы уже знаем, как выглядят такие кривые! Они похожи на график синуса или косинуса, и мы назовем их на время алгебраическим синусом и алгебраическим косинусом. Теперь перейдем от основания 10 к натуральному основанию. Это только изменит масштаб горизонтальной оси; мы обозначим 2,3025s через t и напишем 10is=eit, где t — действительное число. Известно, что eit=x+iy, и мы запишем это число в виде
eit=cost+isint. (22.8)
Каковы свойства алгебраического косинуса cost и алгебраического синуса sint? Прежде всего x2+y2=1; это мы уже доказали, и это верно для любого основания, будь то 10 или е. Следовательно, cos2t+sin2t=l. Мы знаем, что eit=1+it для малых t; значит, если t — близкое к нулю число, то cost близок к единице, a sint близок к t. Продолжая дальше, мы придем к выводу, что все свойства этих замечательных функций, получающихся в результате возведения в мнимую степень, в точности совпадают со свойствами тригонометрического синуса и тригонометрического косинуса.
А как обстоит дело с периодом? Давайте найдем его. В какую степень надо возвести е, чтобы получить i? Иными словами, чему равен логарифм i по основанию е? Мы вычислили уже логарифм i по основанию 10; он равен 0,68226i; чтобы перейти к основанию е, мы умножим это число на 2,3025 и получим 1,5709. Это число можно назвать «алгебраическим p/2». Но поглядите-ка, оно отличается от настоящего p/2 всего лишь последним десятичным знаком, и это просто-напросто следствие наших приближений при вычислениях! Таким образом, чисто алгебраически возникли две новые функции — синус и косинус; они принадлежат алгебре и только алгебре. Мы пошли по их следам и обнаружили, что это те же самые функции, которые так естественно возникают в геометрии. Мы отыскали мост между алгеброй и геометрией.
Подводя итог нашим поискам, мы напишем одну из самых замечательных формул математики
eiq=cosq+isinq. (22.9)
Вот она, наша жемчужина.
Связь между алгеброй и геометрией можно использовать для изображения комплексных чисел на плоскости; точка на плоскости определяется координатами х и у (фиг. 22.2).
Фиг. 22.2. Комплексное число как точка на плоскости.
Представим каждое комплексное число в виде x+iy. Если расстояние точки от начала координат обозначить через r, а угол радиуса-вектора точки с осью x — через q, то выражение x+iy можно представить в виде rei9. Это следует из геометрических соотношений между х, у, r и q. Таким образом, мы объединили алгебру и геометрию. Начиная эту главу, мы знали только целые числа и умели их считать. Зато у нас была небольшая идея о могуществе шага в сторону и обобщения. Используя алгебраические «законы», или свойства чисел, сведенные в уравнения (22.1), и определения обратных операций (22.2), мы смогли создать не только новые числа, но и такие полезные вещи, как таблицы логарифмов, степеней и тригонометрические функции (они возникли при возведении действительных чисел в мнимые степени), и все это удалось сделать, извлекая много раз квадратный корень из десяти!
* Квадратный корень лучше всего извлекать не тем способом, которому обычно учат в школе, а немного иначе. Чтобы извлечь квадратный корень из числа N, выберем достаточно близкое к ответу число а, вычислим N/a и среднее а'=1/2[а+(N/а)]; это среднее будет новым числом а, новым приближением корня из N. Этот процесс очень быстро приводит к цели: число значащих цифр удваивается после каждого шага.