Простейшие и самые широкие технические применения резонанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элементами цепи, и бывают они трех типов, хотя в каждый элемент одного типа всегда примешано чуточку элементов других типов. Прежде чем подробно описать эти элементы, заметим, что наше представление о механическом осцилляторе как о массе, подвешенной к концу пружины, всего лишь приближение. В «массе» сосредоточена вовсе не вся масса системы: пружина тоже обладает какой-то массой, пружина тоже инерционна. Точно так же «пружина» не состоит из одной пружины, масса тоже немного упруга, а не абсолютно тверда, как это может показаться. Подпрыгивая вверх и вниз, она слегка изгибается под толчками пружины. Так же обстоит дело и в электричестве. Расположить все предметы по «элементам цепи» с чистыми, идеальными характеристиками можно только приближенно. Так как у нас нет времени обсуждать пределы таких приближений, мы просто предположим, что они допустимы.
Итак, о трех элементах цепи. Первый называется емкостью (фиг. 23.4); в качестве примера емкости могут служить две металлические пластинки, разделенные тонким слоем диэлектрика.
Фиг. 23.4. Три пассивных элемента цепи.
Если пластинки зарядить, то между ними возникает разность потенциалов. Та же самая разность потенциалов будет между точками А и В, потому что при любой дополнительной разности потенциалов вдоль соединительных проводов заряды стекут по проводам. Таким образом, заданной разности потенциалов V между пластинками соответствуют определенные заряды +q и -q на каждой пластинке. Между пластинками существует некое электрическое поле; мы даже вывели соответствующую формулу для него (см. гл. 13 и 14)
V=sd/e0=qd/e0A , (23.14)
где d — расстояние между пластинками, А — площадь пластинок. Заметим, что разность потенциалов линейно зависит от заряда. Если построить емкость не из параллельных пластин, а придать отдельным электродам какую-нибудь другую форму, разность потенциалов будет по-прежнему пропорциональна заряду, но постоянную пропорциональности не так-то легко будет рассчитать. Однако надо знать только одно: разность потенциалов между концами емкости пропорциональна заряду V=q/C; множитель пропорциональности равен 1/С (С и есть емкость объекта).
Второй элемент цепи называется сопротивлением; этот элемент оказывает сопротивление текущему через него электрическому току. Оказывается, что все металлические провода, а также многие другие материалы сопротивляются току одинаково; если к концам куска такого материала приложить разность потенциалов, то электрический ток в куске I=dq/dt будет пропорционален приложенной разности потенциалов
V=RI=R(dq/dt). (23.15)
Коэффициент пропорциональности называют сопротивлением R. Соотношение между током и разностью потенциалов вам, наверное, уже известно. Это закон Ома.
Если представлять себе заряд, сосредоточенный в емкости, как нечто аналогичное смещению механической системы х, то электрический ток dq/dt аналогичен скорости, сопротивление R аналогично коэффициенту сопротивления g, а 1/С аналогично постоянной упругости пружины k. Самое интересное во всем этом, что существует элемент цепи, аналогичный массе! Это спираль, порождающая внутри себя магнитное поле, когда через нее проходит ток. Изменение магнитного поля порождает на концах спирали разность потенциалов, пропорциональную dI/dt. (Это свойство спирали используется в трансформаторах.) Магнитное поле пропорционально току, а наведенная разность потенциалов (так ее называют) пропорциональна скорости изменения тока
V=L(dI/dt)=L(d2q/dt2). (23.16)
Коэффициент L — это коэффициент самоиндукции; он является электрическим аналогом массы.
Предположим, мы собираем цепь из трех последовательно соединенных элементов (фиг. 23.5); приложенная между точками 1 и 2 разность потенциалов заставит заряды двигаться по цепи, тогда на концах каждого элемента цепи тоже возникает
разность потенциалов: на концах индуктивности VL=L(d2q/dt2), на сопротивлении VR=R(dq/dt), а на емкости Vc=q/C.
Фиг. 23.5. Электрический колебательный контур, состоящий из сопротивления, индуктивности и емкости.
Сумма этих напряжений дает нам полное напряжение
Мы видим, что это уравнение в точности совпадает с механическим уравнением (23.6); будем решать его точно таким же способом. Предположим, что V(t) осциллирует; для этого надо соединить цепь с генератором синусоидальных колебаний. Тогда можно представить V(t) как комплексное число V, помня, что для определения настоящего напряжения V(t) это число надо еще умножить на exp(iwt) и взять действительную часть. Аналогично можно подойти и к заряду q, а поэтому напишем уравнение, в точности повторяющее (23.8): вторая производная q— это (iw)2q, а первая — это (iw)q. Уравнение (23.17) перейдет в
или
последнее равенство запишем в виде
где w20=1/LC, a g=R/L. Мы получили тот же знаменатель, что и в механической задаче, со всеми его резонансными свойствами! В табл. 23.1 приведен перечень аналогий между электрическими и механическими величинами.
Таблица 23.1 • МЕХАНИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ ВЕЛИЧИНЫ
Еще одно чисто техническое замечание. В книгах по электричеству используют другие обозначения. (Очень часто в книгах на одну и ту же тему, написанных людьми разных специальностей, используются различные обозначения.) Во-первых, для обозначения Ö-1 используют букву j, а не i (через i должен обозначаться ток!). Во-вторых, инженеры предпочитают соотношение между V и I, а не между V и q. Они так больше привыкли. Поскольку I=dq/dt=iwq, то вместо q можно подставить I/iw, и тогда
Можно слегка изменить исходное дифференциальное уравнение (23.17), чтобы оно выглядело более привычно. В книгах часто попадается такое соотношение:
Во всяком случае, мы находим, что соотношение (23.19) между напряжением V и током I то же самое, что и (23.18), и отличается только тем, что последнее делится на iw. Комплексное число R +iwL+1/iwC инженеры-электрики часто называют особым именем: комплексный импеданс Z. Введение новой буквы позволяет просто записать соотношение между током и сопротивлением в виде V=ZI. Объясняется это пристрастие инженеров тем, что в юности они изучали только цепи постоянного тока и знали только сопротивления и закон Ома: V=RI. Теперь они более образованы и имеют уже цепи переменного тока, но хотят, чтобы уравнения были те же самые. Вот они и пишут V=ZI, и единственная разница в том, что теперь сопротивление заменено более сложной вещью: комплексным числом. Они настаивают на том, что они не могут использовать принятого во всем мире обозначения для мнимой единицы и пишут j; поистине удивительно, что они не требуют, чтобы вместо буквы Z писали букву R! (Много волнений доставляют им разговоры о плотности тока; ее они тоже обозначают буквой j. Сложности науки во многом связаны с трудностями в обозначениях, единицах и прочих выдумках человека, о чем сама природа и не подозревает.)
Резонанс в природе
Хотя мы детально разобрали вопрос о резонансе в электрических цепях, можно приводить пример за примером из любых наук и отыскивать в них резонансные кривые. В природе очень часто что-нибудь «колеблется» и так же часто наступает резонанс. Об этом уже говорилось в одной из предыдущих глав; приведем теперь некоторые примеры. Зайдите в библиотеку, возьмите с полки несколько книг, полистайте их; вы обнаружите кривые, похожие на кривые фиг. 23.2, и уравнения, похожие на уравнения, приведенные в этой главе. Много ли найдется таких книг? Для убедительности возьмем всего пять-шесть книг, и они обеспечат вас полным набором примеров резонансов.
Первые два относятся к механике. Самый первый грандиозен — речь идет о колебаниях атмосферы. Если бы атмосфера, которая, по нашим представлениям, шарообразна и обволакивает нашу Землю равномерно со всех сторон, под влиянием Луны вытянулась бы в одну сторону, то атмосфера приняла бы форму вытянутой дыни. Если предоставить атмосферу, имеющую форму дыни, самой себе, то возникнут колебания. Так получается осциллятор. Этими колебаниями управляет Луна, которая вращается вокруг Земли. Чтобы понять, как это происходит, представим себе, что Луна стоит неподвижно на каком-то расстоянии от Земли, а Земля вращается вокруг своей оси. Поэтому проекция силы, скажем, на ось х имеет периодическую составляющую. Отклик атмосферы на приливно-отливные толчки Луны будет обычным откликом осциллятора на периодическую силу. Кривая bна фиг. 23.6 изображает ожидаемый отклик атмосферы (кривая а приведена на заимствованном нами рисунке из книги Мунка и Мак-Дональда по другому поводу и нас не касается). Может показаться странным, что удалось начертить эту кривую: ведь Земля вращается с постоянной скоростью, и поэтому можно получить только одну точку на кривой — точку, приблизительно соответствующую периоду 12 — 12,7 час (приливы бывают дважды в сутки) плюс еще немного, потому что надо учесть движение Луны. Но, измеряя величину атмосферных приливов и время их задержки — фазу, можно найти обе характеристики отклика r и q. По ним можно вычислить w0 и g а затем начертить уже всю кривую! Вот пример чистой науки. Из двух чисел получают два числа, по этим двум числам чертят очень красивую кривую, которая, конечно, проходит через ту же точку, по которой построена кривая! Кривая эта, конечно, бесполезна, пока нельзя измерить еще чего-нибудь, а в геофизике сделать это зачастую очень трудно. В нашем случае тем, что нужно было бы еще измерить, могут служить колебания атмосферы с собственной частотой w0; необходимо какое-то возмущение, которое бы заставило атмосферу колебаться с частотой w0. Такой случай однажды представился. В 1883 г. произошло извержение вулкана Кракатау, в результате которого в атмосферу взлетело пол-острова. Взрыв был такой, что удалось измерить период колебаний атмосферы. Он оказался равным 101/2час. Собственная частота w0, полученная из кривой фиг. 23.6, была равна 10 час 20 мин; таким образом было получено по крайней мере хоть одно подтверждение правильности наших представлений об атмосферных приливах.
Фиг. 23.6. Влияние внешнего возбуждения на атмосферу.
Во втором примере речь пойдет о совсем малых колебаниях. Мы рассмотрим кристалл хлористого натрия, который состоит из расположенных друг возле друга ионов натрия и хлора (мы об этом говорили ранее). Ионы эти несут электрический заряд: первый — положительный, второй — отрицательный. Посмотрим, какие интересные колебания могут возникнуть в кристалле. Если отодвинуть все положительные заряды вправо, а отрицательные — влево и предоставить их самим себе, то они начнут колебаться взад и вперед: решетка ионов натрия против решетки ионов хлора. Но как растащить эти заряды? Очень просто: если внести кристалл в электрическое поле, оно отодвинет положительные заряды в одну сторону, а отрицательные — в другую! Значит, имея внешнее электрическое поле, можно, пожалуй, вызвать колебания кристалла. Но для этого частота электрического поля должна быть столь большой, что она соответствует инфракрасному излучению! Таким образом попытаемся построить резонансную кривую, измеряя поглощение инфракрасного света хлористым натрием. Такая кривая изображена на фиг. 23.7.
По абсциссе отложена не частота, а длина волны, но это техническая деталь; между частотой и длиной волны существует строго определенное соотношение, так что мы все-таки имеем дело со шкалой частот, и одна из этих частот— резонансная частота.
Ну, а что можно сказать о ширине резонансной кривой? Чем эта ширина определяется? Очень часто кривая выглядит гораздо шире, чем ей предписывается теоретическим значением g (эта ширина называется естественной шириной). Есть две причины уширения резонансной кривой. Мы наблюдаем колебания многих осцилляторов сразу, а их частоты могут немного отличаться. К этому приводят, например, натяжения в отдельных частях кристалла. Поэтому мы видим сразу много резонансных кривых, проходящих рядом. Они сливаются в одну кривую с большей шириной. Вторая причина очень проста — не всегда можно точно измерить частоту. Сколько со спектрометром ни возись, он всегда зарегистрирует не одну частоту, а целый спектр частот Dw. Поэтому может оказаться, что разрешающая сила спектрометра недостаточна для определения точной формы кривой. Так или иначе, но, глядя на фиг. 23.7, трудно сказать, что там за ширина — естественная или та, что соответствует неоднородностям кристалла или разрешающей силе спектрометра.
Еще один пример —более хитрый. Посмотрим, как качается магнит. Если поместить магнит в постоянное магнитное поле, то северный полюс захочет повернуться в одну сторону, а южный — в другую, и если магнит может поворачиваться вокруг оси, он будет колебаться около положения равновесия, как это делает стрелка компаса. Однако магниты, о которых пойдет речь,— это атомы. Они обладают моментом количества движения, и вращение порождает не простое движение в направлении поля, а прецессию. Посмотрим со стороны на какую-нибудь составляющую «шатаний», а потом возмутим колебания или попробуем управлять ими, чтобы затем измерить поглощение.
На фиг. 23.8 изображена кривая поглощения — типично резонансная кривая.
Фиг. 23.8. Зависимость потери, магнитной энергии в парамагнитном органическом соединении от напряженности приложенного поля.
Только получена она немного не так, как предыдущая. Частота горизонтального поля, управляющего колебаниями, все время остается постоянной, хотя, казалось бы, экспериментатор, чтобы получить кривую, должен менять частоту. Можно поступить и так, но технически легче оставить и неизменной, а менять напряженность постоянного поля, что соответствует изменению w0 в нашей формуле. Таким образом мы имеем дело с резонансной кривой для w0. Тем не менее мы получаем резонанс с определенными w0 и g.
Пойдем дальше. Следующий наш пример связан с атомным ядром. Движение протонов и нейтронов в ядре — в некотором смысле колебательное движение. Убедиться в этом можно при помощи такого эксперимента: давайте обстреливать ядра лития протонами. Мы обнаружим, что в ядрах при этом будут происходить какие-то реакции, в результате которых возникает g-излучение. Кривая, изображающая количество испущенного излучения, имеет очень острый, типично резонансный максимум. Это изображено на фиг. 23.9. Однако приглядитесь к рисунку повнимательнее: на горизонтальной шкале отложена не частота, как обычно, а энергия! Дело в том, что та величина, которую в классической физике мы привыкли считать энергией, в квантовой механике оказывается определенным образом связанной с частотой некоторой волны. Если в привычной нам крупномасштабной физике при анализе какого-нибудь явления приходится иметь дело с частотой, то в квантовомеханических явлениях, связанных с атомным веществом, аналогичные кривые будут зависеть от энергии. Кривая на фиг. 23.9 иллюстрирует эту связь. Размышляя над этой кривой, можно прийти к мысли, что частота и энергия имеют глубокую взаимосвязь; так оно и есть на самом деле.
Вот еще одна резонансная кривая, полученная в результате опытов с атомными ядрами; она очень узкая, уже всех предыдущих. На фиг. 23.10 величина w0 соответствует энергии 10 000 эв, а ширина g равна приблизительно 10-5 эв; иначе говоря, Q=1010!
Фиг. 23.10. Кривая поглощения g-излучения, полученная Р. Мёссбауэром.
Построив такую кривую, экспериментатор измерил Q самого добротного из ныне известных осцилляторов. Это проделал Р. Мёссбауэр, получивший за свои работы Нобелевскую премию. На горизонтальной шкале отложена скорость, потому что для сдвига частоты использовался эффект Допплера, получающийся в результате относительного движения источника и поглотителя. Цифры дают некоторое представление о тонкости эксперимента — пришлось измерять скорости в несколько сантиметров в секунду! Если продолжить горизонтальную шкалу влево, то нулевую частоту мы найдем на расстоянии 1010см! Страницы для этого, пожалуй, не хватит!
Наконец, возьмем какой-нибудь выпуск журнала Physical Review, скажем, за 1 января 1962 г. Найдется ли в нем резонансная кривая? Резонансные кривые имеются непременно в каждом выпуске этого журнала, и на фиг. 23.11 изображена одна из таких кривых.
Фиг. 23.11. Зависимость эффективных сечений реакций от величины момента количества движения.
Нижняя кривая описывает нерезонансный фон; верхняя кривая показывает, что на зтот фон наложено резонансное сечение.
Это очень интересная кривая. Она соответствует резонансу в реакциях со странными частицами (K--мезоны и протоны). Резонанс был обнаружен при измерении количества частиц разных сортов, получающихся в результате реакции. Разным продуктам реакции соответствуют разные кривые, но в каждой из них при одной и той же энергии есть пики примерно одинаковых очертаний. Значит, при определенной энергии K--мезона существует резонанс. При столкновении К--мезонов и протонов, наверное, создаются благоприятные для резонанса условия, а может быть, даже новая частица. Сегодня мы еще не можем сказать, что такое эти выбросы в кривых — «частица» или просто резонанс. Очень узкий резонанс соответствует очень точно отмеренному количеству энергии; это бывает тогда, когда мы имеем дело с частицей. Когда резонансная кривая уширяется, то становится трудно сказать, с чем мы имеем дело — с частицей, которая живет очень мало, или просто с резонансом в реакции. В гл. 2 мы отнесли эти резонансы к частицам, но когда писалась та глава, об этом резонансе еще не было известно, поэтому нашу таблицу элементарных частиц можно дополнить!