Нуклеиновые кислоты -природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной(генетической) информации в живых организмах.
В природе существует два вида нуклеиновых кислот — дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Различие в названиях объясняется тем, что молекула ДНК содержит пяти-углеродный сахар дезоксирибозу, а молекула РНК— рибозу. В настоящее время известно большое число разновидностей ДНК и РНК, отличающихся друг от друга по строению и значению в метаболизме.
ДНК находится преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах. РНК входит в состав рибосом; молекулы РНК содержатся также в цитоплазме, матриксе пластид и митохондрий.
Нуклеотиды — структурные компоненты нуклеиновых кислот. Нуклеиновые кислоты представляют собой биополимеры, мономерами которых являются нуклеотиды.В состав каждого нуклеотида входит азотистое основание, пятиуглеродный сахар (рибоза или дезоксирибоза) и остаток фосфорной кислоты.Существует пять основных азотистых оснований: аденин, гуанин, урацил, тимин и цитозин. Первые два являются пуриновыми; их молекулы состоят из двух колец, первое содержит пять членов, второе — шесть. Следующие три являются пиримидинами и имеют одно пятичленное кольцо.
ДНК — представляет собой двухцепочечный биологический полимер, мономерами которого являются нуклеотиды, содержащие одно из азотистых оснований, дезоксирибозу и остаток фосфорной кислоты. Полинуклеотидные цепи молекулы ДНК антипараллельны и соединены друг с другом водородными связями по принципу комплиментарности. Двойная спираль, открытая в 1953г. Уотсоном и Криком, содержит шаг размером 3,4 нм, включающем 10 пар комплементарно связанных оснований.
ДНК состоит из Нуклеотидов: пуриновых оснований аденина(А) и гуанина (Г) и пиримидиновых оснований цитозина(Ц)и тимина(Т). РНК состоит из тех же оснований с различием лишь в то, что у РНК вместо тимина присутствует урацил(У). (Тимин отличается от урацила наличием метильной группы (-СН3), которой нет в урациле).
Функция у ДНК одна - хранение генетической информации
РНК - также полимер, мономерами которой являются нуклеотиды. РНК представляет собой однонитевую молекулу. Она построена таким же образом, как и одна из цепей ДНК. Нуклеотиды РНК очень близки, хотя и не тождественны, нуклеотидам ДНК. Их тоже четыре и они состоят из азостистого основания, пентозы и фосфорной кислоты. Три азотистых основания совершенно такие же, как в ДНК: — Аденин, Гуанин и Цитозин. Однако вместо Тимина у ДНК, в РНК присутствует близкий к нему по строению пиримидин - урацил. Различие между ДНК и РНК существует также в характере углевода: в нуклеотидах ДНК углевод — дезоксирибоза, у РНК — рибоза
В отличие от ДНК, содержание которой в клетках конкретных организмов относительно постоянно, содержание РНК сильно в них колеблется. Оно заметно повышено в клетках, в которых происходит синтез белка.
Функции РНК По выполнению функций выделя-ют несколько видов РНК.
Транспортная РНК(т-РНК). Молекулы т-РНК самые короткие: они состоят всего из 80—100 нуклео-тидов. Молекулярная масса таких частиц равна 25—30 тыс. Транспортная РНК в основном содержится в цитоплазме клетки. Функция состоит в переносе аминокислот в рибосомы, к месту синтеза белка. Из общего содержания РНК клетки на долю т-РНК приходится около 10%.
Рибосомная РНК (р-РНК). Это самые крупные РНК в их молекулы входит 3—5 тыс. нуклеотидов, соответственно их молекулярная масса достигает 1,0—1, 5 млн. Рибосомная РНК составляет существенную часть структуры рибосомы. Из общего содержания РНК в клетке на долю р-РНК приходится около 90%.
Информационная РНК (и-РНК), или матричная (м-РНК). Содержится в ядре и цитоплазме. Функция ее состоит в переносе информации о структуре белка от ДНК к месту синтеза белка в рибосомах. На долю и-РНК приходится примерно 0,5—1% от общего содержания РНК клетки.
Все виды РНК синтезируются на ДНК, которая служит своего рода матрицей.
АТФ - аденозинтрифосфорная кислота. Аденозинмонофосфорная кислота (АМФ) входит в состав всех РНК; при присоединении еще двух молекул фосфорной кислоты (НзРО4) она превращается в АТФ и становится источником энергии, которая запасается в двух последних остатках фосфатов: Как во всякий нуклеотид, в АТФ входит остаток азотистого основания (аденин), пентоза (рибоза) и остатки фосфорной кислоты (у АТФ их три). Из состава АТФ под действием фермента АТФ-азы отщепляются остатки фосфорной кислоты.При отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорная кислота), а если отщепляются две молекулы фосфорной кислоты, АТФ переходит в АМФ (аденозинмонофосфорная кислота). Реакции отщепления каждой молекулы фосфорной кислоты сопровождаются освобождением 419 кДж/моль. Для того чтобы подчеркнуть высокую энергетическую «стоимость» фосфорнокислородной связи в АТФ, ее принято обозначать знаком ~ и называтьмакроэргической связью. В АТФ имеются две макроэргические связи.
Значение АТФв жизни клетки велико, она играет центральную роль в клеточных превращениях энергии. В реакциях с участием АТФ она, как правило, теряет одну молекулу фосфорной кислоты и переходит в АДФ. А далее АДФ может присоединить остаток фосфорной кислоты с поглощением 419 кДж/моль, восстановив запас энергии. Основной синтез АТФ происходит в митохондриях.