— мутации, изменяющие последовательность нуклеотидов в гене, т. е. структуру самого гена.
• Генные дупликации — удвоение пары или нескольких пар нуклеотидов (удвоение пары Г—Ц).
2. Генные инсерции — вставка пары или нескольких нар нуклеотидов (вставка пары Г—Ц между А—Т и Т—А).
3. Генные делеции — выпадение нуклеотидов (выпадение комплементарной пары Т—А между А—Т и Г—Ц).
4. Генные инверсии — перестановка фрагмента гена (во фрагменте исходная последовательность нуклеотидов Т—А, Г—Ц заменяется на обратную Г—Ц, Т—А).
5. Замены нуклеотидов — замена пары нуклеотидов на другую; при этом общее число нуклеотидов не меняется (замена Т—А на Ц—Г). Один из наиболее частых типов мутаций. Дупликации, инсерции и делеции могут приводить к изменению рамки считывания генетического кода. Рассмотрим это на примере. Возьмем следующую исходную последовательность нуклеотидов в ДНК (для простоты будем рассматривать только одну ее цепь): АТГАЦЦГЦГА... Она будет считываться следующими триплетами: АТГ, АЦЦ, ГЦГ, А... Допустим, произошла делеция, и в самом начале последовательности между А и Г выпал нуклеотид Т. В результате этой мутации получится измененная последовательность нуклеотидов: АГАЦЦГЦГА, которая уже будет считываться совершенно иными триплетами: АГА, ЦЦГ, ЦГА. Поэтому в полипептидную цепь будут соединяться совершенно другие аминокислоты и, таким образом, будет синтезироваться мутантный белок, совершенно непохожий на нормальный. Кроме того, в результате генных мутаций, приводящих к сдвигу рамки, могут образовываться терминирующие кодоны ТАА, ТАГ или ТГА, прекращающие синтез. Выпадение целого триплета приводит к менее тяжелым генетическим последствиям, чем выпадение одного или двух нуклеотидов. Рассмотрим ту же нуклеотидную последовательность: АТГАЦЦГЦГА... Допустим, произошла делеция, и выпал целый триплет АЦЦ. Мутантный ген будет иметь измененную последовательность нуклеотидов АТГГЦГА, которая будет считываться следующими триплетами: АТГ, ГЦГ, А... Видно, что после выпадения триплета рамка считывания не сдвинулась, синтезированный белок хоть и будет на одну аминокислоту отличаться от нормального, но в целом будет весьма на него похож. Однако это отличие в аминокислотном составе может привести к изменению третичной структуры белка, которая в основном и определяет его функции, и функция мутантного белка, скорее всего, будет снижена по сравнению с нормальным белком. Этим и объясняется тот факт, что мутации, как правило, рецессивны.
Генные мутации проявляются фенотипически в результате синтеза соответствующих белков:
Генные мутации приводят к изменению строения молекул белков и к появлению новых признаков и свойств (например, альбиносы у животных и растений, махровость у цветков за счет преобразования тычинок в лепестки и снижение их плодовитости, образование летальных и полулетальных генов, вызывающих гибель организма, и т. д.). Генные мутации происходят пoд влиянием мутагенных факторов (биологических, физических химических) или спонтанно (случайно). Генные мутации свойственны и генетической РНК вирусов.
Репарация (от лат. репарацио – восстановление) – 1) ликвидация повреждения генетических структур (ДНК, хромосом), осуществляется специальными ферментами и находится под контролем генов; процесс, направленный против возникновения мутаций; репарация свойственна всем живым организмам; 2) восстановление тканей тела и состава популяций организмов, поврежденных или изреженных ионизирующим излучением или ультрафиолетовыми лучами. Происходит посредством размножения клеток и организмов, уцелевших после облучения.
Повреждения в ДНК сводятся к минимуму благодаря существованию систем, которые узнают эти повреждения и исправляют их. Поэтому определяемая частота мутаций – спонтанных и индуцированных – отражает равновесие между числом повреждающих событий, происходящих в ДНК, и количеством повреждений, которые были исправлены (или неправильно исправлены). Значение репарирующих систем в жизни клетки так велико, что, вероятно, по сложности они не отличаются от репликационного аппарата.
Под "повреждением" понимают любое изменение ДНК, которое вызывает отклонение от обычной двухцепочечной структуры. Неправильные нуклеотиды, как правило, удаляются из ДНК системой эксцизионной репарации (от англ. excision – вырезание). На первом этапе поврежденная структура узнается либо ферментом специфической эндонуклеазой, либо ферментом специфической ДНК-гликозилазой. К специфическим эндонуклеазам относится, например, фермент УФ-эндонуклеаза, узнающий тиминовый димер. В каждой клетке существует также не менее 20 различных специфических ДНК-гликозилаз, узнающих какой-либо один тип измененных оснований в ДНК.
В том случае, когда нарушение структуры ДНК заключается в неправильном спаривании обычных оснований, репарирующая система не может определить, какое из оснований правильное. В этом случае возможен случайный выбор для удаления одного из неспаренных оснований. Но во многих случаях может быть применена рекомбинационная репарация, которая использует материал одной молекулы ДНК (из гомологичной хромосомы) для восстановления другой.