Преобразованиями Лоренца в физике, в частности, в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно-временные координаты каждого события при переходе от одной инерциальной системы отсчета (ИСО) к другой. Аналогично, преобразованиям Лоренца при таком переходе подвергаются координаты любого 4-вектора.
Чтобы явно различить преобразования Лоренца со сдвигами начала отсчёта и без сдвигов, когда это необходимо, говорят о неоднородных и однородных преобразованиях Лоренца.
Преобразования Лоренца без сдвигов начала отсчёта образуют группу Лоренца, со сдвигами — группу Пуанкаре, иначе называемую неоднородной группой Лоренца.
С математической точки зрения преобразования Лоренца — это преобразования, сохраняющие неизменной метрику Минковского, то есть, в частности, последняя сохраняет при них простейший вид при переходе от одной инерциальной системы отсчёта к другой (другими словами преобразования Лоренца — это аналог для метрики Минковского ортогональных преобразований, осуществляющих переход от одного ортонормированного базиса к другому, то есть аналог поворота координатных осей для пространства-времени). В математике или теоретической физике преобразования Лоренца могут относиться к любой размерности пространства.
Именно преобразования Лоренца, смешивающие — в отличие от преобразований Галилея — пространственные координаты и время, исторически стали основой для формирования концепции единого пространства-времени.
§ Следует заметить, что лоренц-ковариантны не только фундаментальные уравнения (такие, как уравнения Максвелла, описывающее электромагнитное поле, уравнение Дирака, описывающее электрон и другие фермионы), но и такие макроскопические уравнения, как волновое уравнение, описывающее (приближенно) звук, колебания струн и мембран, и некоторые другие (только тогда уже в формулах преобразований Лоренца под c следует иметь в виду не скорость света, а какую-то другую константу, например скорость звука). Поэтому преобразования Лоренца могут быть плодотворно использованы и в связи с такими уравнениями (хотя и в довольно формальном смысле, впрочем, мало отличающемся — в своих рамках — от их применения в фундаментальной физике).
[править]Вид преобразований при коллинеарных (параллельных) пространственных осях
Если ИСО движется относительно ИСО с постоянной скоростью вдоль оси , а начала пространственных координат совпадают в начальный момент времени в обеих системах, то преобразования Лоренца (прямые) имеют вид:
где — скорость света, величины со штрихами измерены в системе , без штрихов — в .
Эта форма преобразования (то есть при выборе коллинеарных осей), называемая иногда бустом (англ. boost) или лоренцевским бустом (особенно в англоязычной литературе), несмотря на свою простоту, включает, по сути, всё специфическое физическое содержание преобразований Лоренца, так как пространственные оси всегда можно выбрать таким образом, а при желании добавить пространственные повороты не представляет трудности (см. это в явном развёрнутом виде ниже), хотя и делает формулы более громоздкими.
§ Формулы, выражающие обратное преобразование, то есть выражающие через можно получить просто заменой на (абсолютная величина относительной скорости движения систем отсчёта одинакова при измерении её в обеих системах отсчёта, поэтому можно при желании снабдить штрихом, только при этом надо внимательно следить за тем, чтобы знак и определение соответствовали друг другу) и взаимной заменой штрихованных и с нештрихованными. Или решая систему уравнений (1) относительно .
§ Надо иметь в виду, что в литературе преобразования Лоренца часто записывается для упрощения в системе единиц, где , что действительно делает их вид более изящным.
§ Видно, что при преобразованиях Лоренца события, одновременные в одной системе отсчёта, не являются одновременными в другой (относительность одновременности), кроме того, у движущегося тела сокращается продольный размер по сравнению с тем, какой оно имеет в сопутствующей ему системе отсчёта (лоренцево сокращение), а ход движущихся часов замедляется, если наблюдать их из «неподвижной» системы отсчёта (релятивистское замедление времени).
[править]Вывод преобразований
Основная статья: Вывод преобразований Лоренца
Преобразования Лоренца могут быть получены абстрактно, из групповых соображений (в этом случае они получаются с неопределённым ), как обобщение преобразований Галилея (что было проделано Анри Пуанкаре — см. ниже). Однако впервые они были получены как преобразования, относительно которых ковариантны уравнения Максвелла (то есть по сути — которые не меняют вида законов электродинамики и оптики при переходе к другой системе отсчёта). Могут также быть получены из предположения линейности преобразований и постулата одинаковости скорости света во всех системах отсчёта (являющегося упрощённой формулировкой требования ковариантности электродинамики относительно искомых преобразований, и распространением принципа равноправия инерциальных систем отсчёта — принципа относительности — на электродинамику), как это делается в специальной теории относительности (СТО) (при этом в преобразованиях Лоренца получается определённым и совпадает со скоростью света).
Надо заметить, что если не ограничивать класс преобразований координат линейными, то первый закон Ньютона выполняется не только для преобразований Лоренца, а для более широкого класса дробно-линейных преобразований [3](однако этот более широкий класс преобразований — за исключением, конечно, частного случая преобразований Лоренца — не сохраняет метрику постоянной).
[править]Разные формы записи преобразований
[править]Вид преобразований при произвольной ориентации осей
В силу произвольности введения осей координат, многие задачи можно свести к указанному случаю. Если же задача требует иного расположения осей, то можно воспользоваться формулами преобразований в более общем случае. Для этого радиус-вектор точки
,
где — орты, надо разбить на составляющую параллельную скорости и составляющую ей перпендикулярную
.
Тогда преобразования получат вид
,
где — абсолютная величина скорости, — абсолютная величина продольной составляющей радиус-вектора.
Эти формулы для случая параллельных осей, но с произвольно направленной скоростью, можно преобразовать к виду, впервые полученному Герглоцем:
.
Обратите внимание, что самый общий случай, когда начала координат не совпадают в нулевой момент времени, здесь не приведён с целью экономии места. Его можно получить, добавив к преобразованиям Лоренца трансляцию(смещение начала координат).
[править]Преобразования Лоренца в матричном виде
Для случая коллинеарных осей преобразования Лоренца записываются в виде
,
где .
При произвольной ориентации осей, в форме 4-векторов это преобразование записывается как:
где E — единичная матрица 3 3, — тензорное умножение трехмерных векторов.
Надо иметь в виду, что в литературе матрица преобразований Лоренца часто записывается для упрощения в системе единиц, где .
Произвольное однородное преобразование Лоренца можно представить как некоторую композицию вращений пространства и элементарных преобразований Лоренца, затрагивающих только время и одну из координат. Это следует из алгебраической теоремы о разложении произвольного вращения на простые.
[править]Свойства преобразований Лоренца
§ Можно заметить, что в случае, когда , преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последее объясняет, каким образом сочетаются эти две теории — первая является обобщением и уточнением второй, а вторая — предельным случаем первой, оставаясь в этом качестве верной приближенно (с некоторой точностью, на практике часто очень и очень большой) при достаточно малых (по сравнению со скоростью света) скоростях движений.
§ Преобразования Лоренца сохраняют инвариантным интервал для любой пары событий (точек пространства-времени) — то есть любой пары точек пространства-времени Минковского:
Убедиться в этом нетрудно, например, проверив явно то, что матрица преобразования Лоренца ортогональна в смысле метрики Минковского
определяемой таким выражением, то есть . Это проще всего проделать для буста, а для трехмерных вращений это очевидно из определения декартовых координат, кроме того, сдвиги начала отсчёта не меняют разностей координат. Следовательно, это свойство верно и для любых композиций бустов, вращений и сдвигов, что и составляет полную группу Пуанкаре; как только мы узнали, что преобразования координат ортогональны, из этого сразу следует, что формула для расстояния остаётся неизменной при переходе к новой системе координат — по определению ортогональных преобразований.
§ В частности, инвариантность интервала имеет место и для случая , а значит — гиперповерхность в пространстве-времени, которая определяется равенством нулю интервала до заданной точки — световой конус — является неподвижной при преобразованиях Лоренца (что является проявлением инвариантности скорости света). Внутреность двух полостей конуса соответствует времениподобным — вещественным — интервалам от их точек до вершины, внешняя область — пространственноподобным — чисто мнимым (в принятой в этой статье сигнатуре интервала).
§ Другие инвариантные гиперповерхности однородных преобразований Лоренца (аналоги сферы для пространства Минковского) — гиперболоиды: двуполостный гиперболоид для времениподобных интервалов относительно начала координат, и однополостный — для пространственноподобных интервалов.
§ Матрицу преобразования Лоренца при коллинеарных пространственных осях (в системе единиц c=1) можно представить как:
где . В этом легко убедиться, учитывая и проверив выполнение соответствующего тождества для матрицы преобразования Лоренца в обычном виде.
§ Если принять введённые Минковским обозначения , то преобразование Лоренца для такого пространства сводится к повороту на мнимый угол в плоскости, включающей ось (для случая движения вдоль оси — в плоскости ). Это очевидно, исходя из подстановки в матрицу, приведенную чуть выше — и её небольшого изменения для того, чтобы учесть вводимую мнимость временной координаты — и сравнении её с обычной матрицей вращения.
[править]Следствия преобразований Лоренца
Изменение длины
Пусть в системе отсчета покоится стержень и координаты его начала и конца равны , . Для определения длины стержня в системе фиксируются координаты этих же точек в один и тот же момент времени системы . Пусть — собственная длина стержня в , а — длина стержня в . Тогда из преобразований Лоренца следует:
или
Таким образом, длина движущегося стержня, измеренная «неподвижными» наблюдателями, оказывается меньше, чем собственная длина стержня.
[править]Относительность одновременности
Если два разнесённых в пространстве события (например, вспышки света) происходят одновременно в движущейся системе отсчёта, то они будут неодновременны относительно «неподвижной» системы. При Δt' = 0 из преобразований Лоренца следует
Если Δx = x2 − x1 > 0, то и Δt = t2 − t1 > 0. Это означает, что, с точки зрения неподвижного наблюдателя, левое событие происходит раньше правого (t2 > t1). Относительность одновременности приводит к невозможности синхронизации часов в различных инерциальных системах отсчёта во всём пространстве.
Пусть в двух системах отсчёта, вдоль оси x расположены синхронизированные в каждой системе часы, и в момент совпадения «центральных» часов (на рисунке ниже) они показывают одинаковое время. Левый рисунок показывает, как эта ситуация выглядит с точки зрения наблюдателя в системе S. Часы в движущейся системе отсчёта показывают различное время. Находящиеся по ходу движения часы отстают, а находящиеся против хода движения опережают «центральные» часы. Аналогична ситуация для наблюдателей в S' (правый рисунок).
[править]Замедление времени для движущихся тел
[править]Связанные определения
Лоренц-инвариантность — свойство физических законов записываться одинаково во всех инерциальных системах отсчета (с учетом преобразований Лоренца). Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено. Однако некоторые теории пока не удаётся построить так, чтобы выполнялась Лоренц-инвариантность.
[править]История
Преобразования названы в честь их первооткрывателя — Х. А. Лоренца, который впервые ввел их (вместо преобразований Галилея) в качестве преобразований, связывающих геометрические величины (длины, углы), измеренные в разных инерциальных системах отсчета[источник не указан 293 дня], чтобы устранить противоречия между электродинамикой и механикой, которые имелись в ньютоновской формулировке, включающей преобразования Галилея, что в конечном итоге привело к успеху при существенной модификации механики.
Сначала было обнаружено, что уравнения Максвелла инвариантны относительно подобных преобразований (В. Фогтом в 1887 году)[источник не указан 293 дня]. Это же было повторено Лармором в 1900 году[источник не указан 293 дня].
В 1892 году Лоренц ввёл теорию сокращения, предполагающую сокращение длин всех твёрдых тел в направлении движения, количественно совпадающее с тем, что понимается сейчас под лоренцевым сокращением.
Преобразования Лоренца были впервые опубликованы Лоренцем в 1904 году, но в то время их форма была несовершенна (они были выведены с точностью до членов , а в преобразовании тока была допущена ошибка). К современному, полностью самосогласованному виду их привели французский математик А. Пуанкаре и параллельно и независимо А. Эйнштейн в 1905 году. Анри Пуанкаре первым установил и детально изучил одно из самых важных свойств преобразований Лоренца — их групповую структуру, и показал, что "преобразования Лоренца представляют ни что иное, как поворот в пространство четырех измерений, точки которого имеют координаты ".[4]. В 1905 году Эйнштейн в своей теории относительности пришёл к широко популярной впоследствии формально-аксиоматической трактовке этих преобразований.
Пуанкаре же ввел термины «преобразования Лоренца» и «группа Лоренца» и показал, исходя из эфирной модели, невозможность обнаружить движение относительно абсолютной системы отсчета (то есть системы, в который эфир неподвижен), модифицировав таким образом принцип относительности Галилея[источник не указан 293 дня]. Ему же принадлежит групповой вывод явного вида преобразований Лоренца (с неопределенным c) без независимого постулата инвариантности скорости света[источник не указан 293 дня].
В 1910 году В.С. Игнатовский первым попытался получить преобразование Лоренца на основе теории групп и без использования постулата о постоянстве скорости света [5].
15. Относительность отрезков длины и промежутков времени в СТО. Собственное время. Релятивистский закон преобразования скоростей.
Относительность длин и промежутков времени. [1]
Оботносительности длин и промежутков времени. Последующие рассуждения основываются на принципе относительности и на принципе постоянства скорости света. [2]
Из определения длины следует, чтоотносительность длины данного стержня является следствием относительности понятия одновременности. Это же относится и к форме любого тела - его размеры в направлении движения также различны в разных инерциальных системах отсчета. [3]
Рассматриваются различные следствия из этих преобразований: относительность длин тел, моментов и промежутков времени. Рассматривается также сложное движение в релятивистской кинематике. [4]
Преобразования Лоренца и следствия из них приводят к выводу оботносительности длин и промежутков времени, значение которых в различных системах отсчета разное. [5]
Нетрудно видеть, что эти уравнения эквивалентны изложенным выше выводам оботносительности длин и промежутков времени. [6]
Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, какотносительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное экспериментальное подтверждение, являясь тем самым обоснованием постулатов Эйнштейна - обоснованием специальной теории относительности. [7]
Наряду с безусловно положительными результатами, принесенными теорией относительности в физику, имеются попытки иска зить физическое содержание этой теории с целью обоснования чисто идеалистических, махистских воззрений. Относительность длины тела и промежутка времени при инерциальных движениях подменяют истолкованием этих величин как субъективных понятий. На этом основании физики-махисты отрицают объективный характер законов природы. [8]
Между формулами (153.4) и (153.5) нет противоречия, ибо каждый раз имеются в виду различные измерения, хотя процедура измерений относительно каждой системы совершенно одинакова. В каждой системе получаем одинаковый результат; относительность длины, как и относительность времени, взаимна. [9]
Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря наотносительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета. [10]
Далее Эйнштейн с удивительным для первой работы изяществом доказывает достаточность названных двух постулатов. В Кинематической части работы он определяет одновременность; говорит оботносительности длин и времени; дает теорию преобразования координат и времени от покоящейся системы к системе, находящейся в равномерном поступательном движении относительно первой; физическое значение полученных уравнений для движущихся твердых тел и движущихся часов; выводит теорему сложения скоростей. [11]
Поскольку формой существования всех видов материи является пространство - время, естественно включить в число основных единицы протяженности и времени. Здесь уместно сделать следующее замечание. Хотя с точки зрения теорииотносительности длины отрезков и промежутков времени утратили свою абсолютность, поскольку они зависят от относительного движения систем отсчета, они сохранили свою объективность, подобно тому как в обычной геометрии проекции отрезка на координатные оси, будучи относительными ( т.е. зависящими от системы координат), тем не менее остаются объективными. Эти соображения позволяют нам без всяких оговорок включить в число основных единицы длины и времени. То же в полной мере относится и к третьей величине - массе, единицы которой обычно также выбираются в качестве основных. [12]
Собственное время в теории относительности, время, измеряемое часами в собственной системе отсчёта движущегося тела, т. е. часами, жёстко связанными с телом (покоящимися относительно него и находящегося в том же месте). Время протекания какого-либо процесса, измеряемое наблюдателем вне тела, в котором происходит процесс, зависит от относительной скорости наблюдателя и тела. При измерениях вдали от тяготеющих тел можно пользоваться частной (специальной) теорией относительности (см. Относительности теория). Если измерения производятся в некоторой инерциальной системе отсчета («лабораторной системе»), а тело движется относительно неё с постоянной скоростью u, то промежуток Собственное время Dt связан с промежутком времени Dt наблюдателя соотношением: , где c - скорость света в вакууме; если u меняется со временем то для конечного интервала времени t1, t2 Собственное время
При наличии полей тяготения следует пользоваться общей теорией относительности (см. Тяготение). Собственное время процесса в поле тяготения течёт тем медленнее с точки зрения наблюдателя вне поля, чем сильнее гравитационное поле, т. е. чем больше модуль гравитационного потенциала j (потенциал j отрицателен, вне поля полагают j = 0). Для не слишком сильных полей, когда |j|/с2 << 1, Собственное время Dt по неподвижным часам в точке с потенциалом j связано с временем Dt неподвижного наблюдателя вне поля соотношением: Dt = (1 - |j|/c2)/Dt.
Как видно из формул, Собственное время всегда меньше времени, измеренного в любой др. системе отсчёта.
16. Релятивистская форма второго закона Ньютона. Связь массы и энергии.