Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ТЯГОВО-СКОРОСТНЫЕ СВОЙСТВА И ТОПЛИВНАЯ ЭКОНОМИЧНОСТЬ АВТОМОБИЛЯ



С ГИДРОПЕРЕДАЧЕЙ

В настоящее время на автомобилях широкое применение нахо­дят гидравлические передачи, которые устанавливают в транс­миссии автомобиля.

Гидравлические передачи облегчают управление автомобилем, повышают безопасность движения и проходимость автомобиля. Кроме того, они увеличивают долговечность двигателя. Однако гидравлические передачи несколько ухудшают тягово-скоростные свойства автомобиля и снижают топливную экономичность.

На автомобилях используют два типа гидравлических передач: гидромуфты и гидротрансформаторы. Гидромуфты как самостоя­тельные механизмы применяют ограниченно. Наибольшее распро­странение получили гидротрансформаторы, которые при опреде­ленных условиях переходят на режим работы гидромуфты.

В гидромуфтах и гидротрансформаторах крутящий момент пе­редается от двигателя к трансмиссии с помощью жидкости (масла малой вязкости) под действием гидродинамического (скоростно­го) напора.

Гидромуфта

Гидромуфту устанавливают на автомобиле совместно с фрик­ционным сцеплением и ступенчатой механической коробкой пе­редач.

В гидромуфте (рис. 5.1) ведущей частью является насосное ко­лесо (насос) 3,которое жестко связано с коленчатым валом 1 двигателя. Турбинное колесо (турбина) 2 — ведомая часть гидро­муфты. Оно жестко соединено с первичным валом 4 коробки пе­редач. Насос и турбина имеют радиально расположенные лопатки. Внутренняя полость гидромуфты заполнена маслом.

Принцип действия гидромуфты таков. При вращении коленча­того вала двигателя масло под действием центробежной силы по­ступает к наружной части насоса, воздействует на лопатки турби­ны и приводит ее во вращение.

Из турбины масло снова поступает в насос, создавая при этом круг его циркуляции, чем и обеспечивается передача крутящего момента от двигателя к трансмиссии.


Для гидромуфты характерно то, что она не изменяет значе­ние крутящего момента при его передаче от двигателя к трансмис­сии.

Режим работы гидромуфты характеризует ее передаточное от­ношение

Рис. 5.1. Схема гидромуфты: 1 — коленчатый вал двигателя; 2 — турбинное колесо; 3 — насосное ко­лесо; 4 — первичный вал коробки передач

где ωт, ωн — угловые скорости соответственно турбины и гидро­насоса гидромуфты.

Обязательным условием рабо­ты гидромуфты является наличие в ней скольжения. Его величину Sгм ,%, определяют по формуле

.

При неподвижной турбине Sгм = 100 %, что отвечает случаю полного скольжения. При возрастании угловой скорости турбины скольжение уменьшается, и его наименьшая величина составляет 2...3%.

Рис. 5.2. Тяговые характеристики автомобилей с гидромуфтой (сплошные линии) и без нее (штриховые линии): I —III — передачи

Вследствие наличия скольжения кривая крутящего момента ско­ростной характеристики двигателя при наличии гидромуфты сме­щается в область меньших угло­вых скоростей коленчатого вала. На рис. 5.2 представлена тяго­вая характеристика автомобиля с гидромуфтой. Для сравнения штриховыми линиями на рисун­ке приведена тяговая характерис­тика автомобиля без гидромуфты. Из рисунка видно, что тягово-скоростные свойства автомобиля при наличии гидромуфты изме­няются только в области малых значений угловой скорости колен­чатого вала и во время трогания автомобиля с места. Следователь­но, гидромуфта позволяет исполь­зовать большое значение крутяще­го момента двигателя в начале раз-


гона или при движении с очень малой скоростью. Это обеспечивает плавное трогание автомобиля с места на любой передаче и исклю­чает прекращение работы двигателя при остановке автомобиля с невыключенным сцеплением.

Гидротрансформатор

Гидротрансформатор устанавливают в трансмиссии автомоби­ля обычно совместно с планетарной коробкой передач.

Ведущая часть гидротрансформатора (рис. 5.3) — насос 2,же­стко соединенный с коленчатым валом 6 двигателя, а ведомая часть — турбина 1 — с валом трансмиссии 3. Между насосом и турбиной гидротрансформатора на муфте свободного хода 4 уста­новлен реактор 5, обеспечивающий плавный и безударный вход масла из турбины в насос и существенное увеличение передавае­мого крутящего момента.

Характерной особенностью гидротрансформатора является из­менение значения крутящего момента при его передаче от двигате­ля к трансмиссии. Свойства гидротрансформатора оцениваются его безразмерной характеристикой, которая представлена на рис. 5.4 (для сравнения штриховыми линиями показана характеристика гидромуфты).

Безразмерная характеристика представляет собой зависимости коэффициента полезного действия ηгт, коэффициента трансфор­мации kгти коэффициента крутящего момента насоса λн от пере­даточного отношения гидротрансформатора iгт.

Безразмерная характеристика гидротрансформатора определяет­ся экспериментально. При этом коэффициенты полезного дей­ствия, трансформации и крутя­щего момента насоса используют в безразмерном виде.

Режим работы гидротрансфор­матора определяется его переда­точным отношением

Рис. 5.3. Схема гидротрансформа­тора: 7 — турбина; 2 — насос; 3 — вал трансмиссии; 4 — муфта свободного хода; 5 — реактор; 6 — коленчатый вал двигателя

где ωт — угловая скорость турби­ны; ωн — угловая скорость насоса. Коэффициент трансформации характеризует степень увеличения крутящего момента, передаваемо­го гидротрансформатором:


В указанном выражении

Mтур= λтρжωт2Dгт5 — крутящий момент на валу турбины;

Mн= λнρжωн2Dгт5 — крутящий момент на валу насоса,

где Dгт — активный (наибольший) диаметр гидротрансформатора; ρж — плотность жидкости (масла) в гидротрансформаторе; λнкоэффициент крутящего момента насоса; λт — коэффициент кру­тящего момента турбины.

Для гидромуфты коэффициент трансформации kгм= 1, так как крутящие моменты на валах насоса и турбины равны (Мн= Мтур).

Коэффициент полезного действия гидротрансформатора харак­теризует его энергетические свойства:

где Nнмощность, подводимая к насосу; Nтур — мощность на валу турбины гидротрансформатора.

Основным недостатком гидротрансформаторов является то, что они имеют значительно меньший КПД, чем ступенчатые механи­ческие коробки передач. Так, наибольшие значения КПД гидро­трансформатора (0,85...0,92) достижимы только при оптималь­ном передаточном отношении (0,7...0,8). При других передаточ­ных отношениях, больших или меньших оптимального, КПД гид­ротрансформатора быстро уменьшается.

КПД гидромуфты

.

Следовательно, при возрас­тании угловой скорости турби­ны КПД гидромуфты увеличи­вается прямо пропорционально ее передаточному отношению, что видно на рис. 5.4.

Рис. 5.4. Безразмерные характерис­тики гидротрансформатора (сплош­ные линии) и гидромуфты (штри­ховые линии)


Коэффициент крутящего момента насоса гидротрансформато­ра λнопределяет прозрачность гидротрансформатора, т. е. его свой­ство изменять нагрузку на валу насоса в зависимости от нагрузки на валу турбины.

Гидротрансформаторы могут быть прозрачными и непрозрач­ными.

При использовании непрозрачного гидротрансформатора изме­нение сопротивления движению автомобиля не влияет на режим работы двигателя (λн = const). В этом случае режим работы двигате­ля зависит только от качества горючей смеси, поступающей в его цилиндры.

У непрозрачного гидротрансформатора коэффициент транс­формации составляет 3...4, т.е. передаваемый крутящий момент увеличивается в 3 — 4 раза. Это преимущество непрозрачных гид­ротрансформаторов способствует их широкому применению на грузовых автомобилях большой грузоподъемности и на автобу­сах.

В случае применения прозрачного гидротрансформатора изме­нение сопротивления движению автомобиля вызывает изменение режима работы двигателя даже при постоянном количестве горю­чей смеси, поступающей в цилиндры (λн ≠const). При увеличении сопротивления движению угловая скорость насоса прозрачного гидротрансформатора и, следовательно, угловая скорость колен­чатого вала двигателя автоматически уменьшаются, а крутящий момент двигателя возрастает. При уменьшении сопротивления дви­жению угловая скорость коленчатого вала и скорость движения автомобиля с прозрачным гидротрансформатором автоматически увеличиваются.

У прозрачных гидротрансформаторов коэффициент трансфор­мации составляет 2,2...3,0, т.е. передаваемый крутящий момент возрастает в 2 — 3 раза. Поэтому прозрачные гидротрансформато­ры получили большее распространение на легковых автомобилях.

Степень прозрачности гидротрансформатора определяется сле­дующим отношением:

где λн mах — максимальное значение коэффициента крутящего мо­мента насоса; λ'н — значение коэффициента крутящего момента насоса при λгт= 1.

Если П= 1,0... 1,2, то гидротрансформатор непрозрачный. При П > 1,2 гидротрансформатор прозрачный.

Гидромуфта и ступенчатая механическая коробка передач яв­ляются прозрачными, так как полностью передают на коленча­тый вал двигателя момент силы сопротивления, приложенный к трансмиссии.


5.3. Показатели тягово-скоростных свойств автомобиля

с гидропередачей

Расчет показателей тягово-скоростных свойств автомобиля с гидропередачей более сложен, чем с механической трансмиссией, из-за отсутствия жесткой связи между коленчатым валом двигате­ля и трансмиссией автомобиля.

Для расчета показателей тягово-скоростных свойств автомоби­ля с гидропередачей необходимо определить область совместной работы двигателя и гидротрансформатора. Поэтому расчет обычно выполняют графоаналитическим способом в такой последователь­ности:

• строят нагрузочную характеристику системы двигатель—гид­ротрансформатор (рис. 5.5). С этой целью задают какое-либо значе­ние передаточного отношения гидротрансформатора iгти по без­размерной характеристике гидротрансформатора определяют соот­ветствующий коэффициент крутящего момента насоса λн. Затем задают несколько значений угловой скорости насоса ωн и по фор­муле для крутящего момента на валу насоса Мнопределяют его значения для выбранного передаточного отношения гидротранс­форматора. По найденным значениям строят кривую крутящего мо­мента насоса на графике скоростной характеристики двигателя. Ана­логично строят кривые крутящего момента насоса для других пере­даточных отношений гидротрансформатора. Точки пересечения кри-

Рис. 5.5. Нагрузочная характеристика системы двигатель —гидротранс­форматор:

iгт' – iгт''' – значения передаточных отношений гидротрансформатора; ω'н ωн''' – значения угловой скорости насоса гидротрансформатора; Mн''' — значение крутя­щего момента на валу насоса гидротрансформатора, соответствующее ω'''


вых крутящих моментов насоса и двигателя определяют область со­вместной работы двигателя и гидротрансформатора;

• используя значения угловой скорости ωн и момента Мн,отве­чающие точкам пересечения кривых моментов насоса Мни двига­теля Ме,по соответствующим формулам определяют угловые ско­рости ωт и крутящие моменты Мтурна валу турбины. При этом
значения коэффициента трансформации kгтберут из безразмер­ной характеристики гидротрансформатора для соответствующих
передаточных отношений;

• определив значения угловой скорости ωт и крутящего момен­та Мтур, находят мощность на валу турбины по формуле

;

• строят график выходной характеристики системы двигатель—
гидротрансформатор (рис. 5.6);

• пользуясь этим графиком, проводят расчеты показателей тя-
гово-скоростных свойств автомобиля с гидропередачей так же,
как и для автомобиля без гидропередачи, т. е. по тем же формулам
с той лишь разницей, что вместо угловой скорости ωе и крутяще­го момента Ме двигателя в формулы подставляют угловую ско­рость ωт и крутящий момент Мтуртурбины. Например, скорость
автомобиля с гидропередачей, км/ч:

.

Тяговая сила на ведущих колесах автомобиля с гидропередачей

.

Определив значения тяговой силы на ведущих колесах автомобиля с гидропередачей при различных ско­ростях движения на разных переда­чах, строят его тяговую характерис­тику.

Рис. 5.6. Выходная характерис­тика системы двигатель — гидротрансформатор

Динамическая характеристика, ускорение, время и путь разгона ав­томобиля с гидротрансформатором рассчитывают по тем же формулам, что и для автомобиля с механичес­кой трансмиссией. Однако в их фор­мулы вместо Ме и ωе двигателя вво­дят соответственно Мтури ωт турби­ны гидротрансформатора.


Определение показателей тягово-скоростных свойств автомо­биля с гидромуфтой выполняют по той же методике, что и для автомобиля с гидротрансформатором. В связи с тем что коэффи­циент трансформации гидромуфты kгт = 1, расчеты оказываются проще, чем для автомобиля с гидротрансформатором. Однако они сложнее, чем для автомобиля с механической ступенчатой транс­миссией.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.