Теорема 5.6. Автоматные языки замкнуты относительно операций объединения, конкатенации, итерации, обращения, подстановки, пересечения, дополнения и разности.
Доказательство. Проведем его конструктивно, также как и в теореме 5.4. Для представления А-грамматик используем графы состояний и в случае операций над двумя языками индексируем нетерминалы исходных грамматик.
Объединение. Пусть даны два А-языка L1=L(G1) и L2=L(G2) и графы состояний грамматик G1 и G2, схематично представленные на рисунках 5.2 (а) и (б), соответственно.
На рисунке 5.2 (в) представлена грамматика G, определяющая объединение исходных языков. Для ее построения вводим новый начальный символ S. Если в исходных грамматиках из S i в A i ведет ребро, помеченное терминалом a, то проведем ребро из S в A i и пометим его тем же терминалом a. Выберем новый конечный символ F и все ребра, шедшие в F1 и F2 проведем в F, а F1 и F2 удалим. Вершины S1 и S2 в общем случае удалять нельзя, так как к ним могут идти ребра, но если в S i возвратов нет, то эту вершину (нетерминал) можно удалить (в нашем примере можно удалить вершину S2 вместе с выходящими из нее дугами).
Очевидно, что результирующая грамматика G является А-грамматикой. Зачастую она может быть недетерминированной, но перевод А-грамматики из недетерминированной формы в детерминированную уже был рассмотрен ранее.
Конкатенация. В этом случае получение грамматики-результата сводится к склеиванию начальной вершины S2 языка-суффикса с заключительной вершиной F1 языка-префикса, т.е. все ребра, шедшие в F1 направляются в S2 , а F1 удаляется (см. рис. 5.3 (а)).
Итерация. Для каждого ребра, идущего из некоторой вершины A исходной грамматики в заключительную вершину F, строится дублирующее его ребро, ведущее из A в начальную вершину S. На рис. 5.3 (б) добавляемые ребра выделены жирной линией.
Обращение. На рис. 5.4 (а) представлен граф исходной грамматики. Изменим имя начальной вершины S на S1 и добавим вершину S2. Для всех ребер выходящих из S1 и входящих в A добавим дуги, выходящие из S2 и входящие в A (см. рис. 5.4 (б)). Заменим имя заключительной вершины F на имя начальной - S, а имя вершины S2 на имя заключительной - F и изменим ориентацию ребер. В результате мы получим А-грамматику, определяющую обращение исходного языка. Граф этой грамматики представлен на рис. 5.4 (в).
Заметим, что добавление вершины необходимо только в случае возвратов в начальную вершину исходной грамматики. Если возвратов нет, то достаточно изменить ориентацию ребер и сделать перестановку имен начального и заключительного состояний.
Подстановка. На рис 5.5 (а) представлена грамматика G2 языка L2, который мы хотим подставить вместо терминала a в язык L1 с грамматикой G1, приведенной на рис. 5.5 (б). Возьмем столько экземпляров G2, сколько в G1 имеется ребер, помеченных терминалом a. Нетерминалы в G1 отметим индексом 0, а нетерминалы в i - ом экземпляре G2 индексом i. На место каждого ребра G1, помеченного терминалом a и идущего из A0 в B0, подставим экземпляр G2, т.е. вершину A0 из G2 совместим с вершиной Si , а вершину B0 - с вершиной Fi. Отметим, что при наличии возвратов в начальную вершину грамматики G2 и других ребер, идущих из A0 грамматики G1 и помеченных терминалами, отличными от a, необходимо расщеплять начальную вершину грамматики G2 на две вершины. Одна из них в точности совпадает с исходной, а другая повторяет все выходы исходной начальной вершины, но возвраты в нее опускаются.
Именно эту, вторую начальную вершину без возвратов и совмещают с A0. Результаты этих преобразований приведены на рис. 5.5. (в), отражающем грамматику языка, полученного в результате указанной подстановки.
Пересечение. Здесь мы отойдем от принятого выше представления А-грамматик в виде графов состояний и рассмотрим построение грамматики, определяющей пересечение двух А-языков на конкретном примере.
Пример 5.3. Пусть А-язык L1 определяется А-грамматикой
G1= ( VT1,VN1,R1,S1) и множество R1 - это группа модифицированных правил
S ® aS½bC½dC
C ® bC½cC½ûëF ,
где F - заключительный нетерминал, и А-язык L2 определяется А-грамматикой
G2=( VT2,VN2,R2,S2) и
Выполним формальную процедуру операции пересечения.
Определим грамматику G=( VN , VT , R, <SR>) языка L = L1Ç L2. Для того, чтобы проконтролировать наше решение вначале определим вид цепочек, как заданных языков, так и языка - результата, благо простота выбранных грамматик позволяет легко это сделать. Цепочки языка L1 могут содержать в начале произвольное количество символов a, обязательный символ b или d, затем, возможно, серию символов b и (или) c и в завершении символ ûë. Схематично цепочку языка L1 можно представить в виде , где квадратные скобки ограничивают необязательные части строки, многоточие обозначает произвольное количество символов, а две строки - произвол в выборе символов. Цепочки языка L2 имеют вид или , а цепочка результирующего языка - .
Заметим, что S Í S1Ç S2. Построение грамматики-пересечения напоминает построение детерминированной формы А-грамматики. В качестве элементов нового множества нетерминалов выбираются пары нетерминалов исходных грамматик типа <SR>, <SQ>, <SM>, <CM>, <CQ> и т.п. В результате построения правил грамматики-пересечения часть этих нетерминалов может быть исключена, как внутренние или внешние тупики. Схема построения правил новой грамматики состоит в том, что рассматриваются только те пары нетерминалов и те их альтернативы, которые имеют одни и те же терминалы в качестве продолжения цепочки. В результате мы получим грамматику
<SR> ® a<SQ>½b<CM>
<SQ> ® b<CQ>
<CQ> ® b<CQ>½ûë<FF>.
Заметим, что нетерминал <CM> не имеет общего продолжения, является внешним тупиком и его можно исключить вместе с правилом <SR> ® b<CM>.
То есть операция пересечения L=L1ÇL2 определяется следующим образом:
G=<VT1ÇVT2,VN={<A1A2>,A1ÎVN1,A2ÎVN2},<S1S2>,R={<AB>®a<CD>, если в исходной грамматике G1 присутствует правило вида A®aC: A,CÎVN1, B®aD, B,DÎVN2}>.
В результате такого построения получается язык, включающий множество цепочек, принадлежащих языку L1 и L2. Действительно:
а) если jÎL1,L2 Þ существует вывод в L1 и L2 Þ в L1: j=ab…f, значит
существует вывод S1aA1bB1…fF1 в G1 и вывод в G2: S2aA2bB2…fF2.
По построению, если существуют такие правила вывода, то в L появится правило вида <S1S2>a<A1A2>…f<F1F2>.
Значит, если есть такой вывод, то цепочка j принадлежит L.
б) Проводя аналогичные рассуждения в обратном порядке, получим, что любая цепочка, принадлежащая языку L, принадлежит языкам L1 и L2.
Рассмотрим еще один пример:
В результате выполнения операции пересечения получим: