1. Молекулярна маса білків - від 6000 до 1000000 й вище. Методи визначення мол. маси – седиментаційний аналіз або ультрацентрифугування (осадження). Вперше Сведберг сконструював ультрацентифугу необхідної швидкості.Константа седиментації S. величина її у випадку білків більша ніж 10-13, тому ця величина названа одиницею Сведберга(S). 8×S – це означає 8×10-13. Швидкість осадження залежить від температури і результати вимирів відносять до 20°С (S20).
2. Форма білкових молекул – скануюча мікроскопія та рентгеноструктурний аналіз.
3. Денатурація білків – порушення ІV-II структури молекули білка (просторової структури), що веде до втрати характерних для нього властивостей під дією фізичних і хімічних факторів. Більшість білків денатурують при 50 – 60°С. Повна денатурація в більшості випадків необоротна. Є оборотна – ренатурація відбувається під час осадження білків орг. розчинниками при низькій температурі, а потім швидко видалити осаджувач.
а б в г
Рис.8.Схема денатурації білка:
а - нативна молекула; б - розгортання поліпептидного ланцюга,
в - стадія нитки; г - випадковий клубок
4. Оптичні властивості білків. Як правило, усі білки, поглинають ультрафіолетове (УФ) світло в таких зонах:
Всі білки поглинають в ІЧ (760 – 10000 нм) ділянці спектру. ІЧ-спектроскопію використовують для визначення відносного вмісту a- та b-спіралей та аморфних ділянок у білковій молекулі.
Таблиця 2. Молекулярні маси і ІЕТ деяких білків
Білок
Молекулярна маса, тис. од
ІЕТ
Інсулін
6,0
-
Цитохром с
13,0
10,6
Кінський міоглобін
17,0
7,0
Альбумін молока
17,4
6,9
Яєчний альбумін
40,0
6,9
Гемоглобін людини
68,0
6,4-7,2
Сироватковий у-
глобулін
160,0
5,6
Каталаза
250,0
5,6
Уреаза (із сої)
480,0
5,1
Тиреоглобулін
660,0
-
Актоміозин
5000,0
-
Вірус тютюнової
мозаїки
40000,0
-
5. Амфотерні властивості білків. Білки є амфотерними електролітами, оскільки у складі їх молекули містяться як кислотні, так і лужні групи.
Кислотно-основні властивості визначаються, головним чином, бічними радикалами амінокислот, здатними до іонізації. До іонізованих груп належать СОО–-групи бокових радикалів аспарагінової і глутамінової кислот, NH3+-групи залишків лізину й аргініну. Іонізація решти груп у молекулах білка істотного значення не має, оскільки a-NН2- і a-СООН-групи утворюють пептидні зв'язки, а кількість N- і С-кінцевих груп є незначною у зв'язку з великими розмірами молекул білка. Ступінь іонізації функціональних груп залежить від значення рН. У кислому середовищі іонізуються NН2-групи, у лужному середовищі –СООН. Тому білки у водному середовищі, подібно до амінокислот, мають властивості амфолітів: у кислому середовищі вони реагують як основи, у лужному – як кислоти. Білкам, як амфотерним електролітам, характерні буферні властивості в організмі, що має відношення до підтримання сталості рН.
Виняток становлять білки, що містять багато залишків гістидину, боковому радикалу якого притаманні буферні властивості в інтервалі значень рН, близьких до фізіологічних. Таких білків мало. Так, гемоглобін, який містить до 8% гістидину, є потужним внутрішньоклітинним буфером в еритроцитах, завдяки чому і підтримує рН крові на сталому рівні. У залежності від знака заряду молекула білка в електричному полі пересуватиметься відповідно в бік катоду чи аноду. Додавання до розчину білка певної кількості іонів Н+чи ОН– змінює рН середовища, внаслідок чого дисоціація одних груп пригнічується, а інших – посилюється.
6.Значення рН середовища, при якому білок не несе сумарного заряду й не рухається в електричному полі, називаєтьсяізоелектричною точкою (ІЕТ). У цій точці білки найменш стабільні у розчині і легко випадають в осад після додавання водовідбираючих речовин, котрі руйнують гідратну оболонку (спирту, ацетону, нейтральної солі та ін.).
Ізоелектричні точки деяких білків такі: пепсину – 1, 0; казеїну – 4, 8; гемоглобіну – 6, 8; рибонуклеази – 7, 8; лізоциму – 1, 0 (див. табл.2). ІЕТ вища за 7, якщо білок містить велику кількість залишків основних амінокислот, і менша за 7 при переважному вмісті кислих амінокислот. Для більшості глобулярних білків ІЕТ знаходяться у кислій зоні (4,5 – 6,5). Проте є й винятки. Наприклад, фермент пепсин, який виконує свою функцію в сильно кислому середовищі шлунка, має ІЕТ близько 1,0, а протамін – близько 12.
Знаючи ІЕТ індивідуальних білків, можна підібрати найкращі умови для їх осадження з біологічних рідин, тканинних екстрактів, які містять суміш різних білків, а також для одержання й очистки білкових препаратів. Наявність великої кількості точок дисоціації визначає і здатність білкових молекул до взаємодії з малими іонами, зокрема з іонами металів, іншими зарядженими молекулами, що дуже важливо для функціонування білка.
Здатність білків взаємодіяти як з аніонами, так і з катіонами має велике біологічне значення. Відомо, що транспорт іонів, наприклад, іонів Сu24 й Zn2+ забезпечується білками; деякі ферменти виявляють каталітичну дію тільки при наявності у складі їх молекули іонів металів. Важливу роль у багатьох фізіологічних процесах відіграє здатність білків зв'язувати катіон кальцію, що має безпосереднє значення в регуляції метаболічних процесів. Здатність білків утворювати з іонами металів комплекси використовується в медицині для усунення наслідків отруєння важкими металами. У цьому випадку дають випити розчин яєчного білка або молока, котрі зв'язують іони металів, перешкоджаючи їх всмоктуванню. Внаслідок наявності в складі білкової молекули великої кількості реакційноздатних груп, білки можуть брати участь в реакціях окиснення, відновлення, солеутворення, ацетилювання, етерифікації, фосфорилювання і т. ін. Усі ці реакції мають місце в живих організмах і забезпечують процеси їх життєдіяльності. Білки, як амфотерні полі-електроліти, виявляють в організмі буферні властивості,
7. Розчинність білка. Більшість білків – гідрофільні речовини, які добре розчиняються у воді. Переважна частина поверхні білкової молекули утворена групами, здатними до гідратації. Альбуміни розчинні у воді, глобуліни тільки в присутності електролітів (у сольових розчинах). Білки сполучних тканин (кератин, колаген, еластин та інші) практично нерозчинні у воді.
При використанні білків в якості збагачувачів, наповнювачів (розріджувачів), функціональних інгредієнтів і аналогів м'ясних і рибних виробів велике значення мають такі властивості білкових суспензій, як обмежена ступінь набухання і розмір часток, водо- і жирозв‘язуюча здатність, адгезійні властивості, значення рН і буферна ємність, утворення в'язко-пружноеластичних мас і гелів.
Вологозв'язуюча здатність характеризується адсорбцією води за участю гідрофільних залишків амінокислот,
Жирозв‘язуюча здатність характеризується адсорбцією жиру за рахунок гідрофобних залишків. При невисокій вологості гідрофільні групи, взаємодіючи з молекулами води, утворюють мономолекулярний шар, при високій вологості – навколо глобул білка формується багатошарова структура з одночасним проникненням води у западини і виступи. Загальна кількість води і жиру на поверхні досягає 0,2 – 0,4 г на 1 г білків. Здатність білків утримувати жир і воду залежить не тільки від особливостей амінокислотного складу і структури, а й від фракційного складу, способу обробки, рН середовища, температури і присутності вуглеводів, ліпідів та інших білків. У пшеничному тісті при додаванні соєвого білка або пшеничної клейковини водопоглинаюча здатність позитивно корелює з кількістю нерозчинної фракції білків і негативно – з вмістом розчинної. Висока здатність білків утримувати воду в харчових продуктах (м'ясних, хлібобулочних і т.д.) підвищує вихід останніх, подовжує терміни зберігання і покращує текстуру. Денатуровані білки мають знижену вологозв'язуючу здатність, і їх застосування негативно позначається на якості хліба. Висока жироутримуюча здатність білків забезпечує ніжну і однорідну текстуру виробів, виключає відділення жиру, зморщування виробів, зменшує втрати при варінні і смаженні.
Жироемульгуюча і піноутворююча здатності білків широко використовуються в практиці отримання жирових емульсій та пін. Присутність в одному білковому ланцюзі гідрофобних і гідрофільних угруповань забезпечує розподіл молекул певним чином на межі розділу фаз вода-олія і вода-газ. Орієнтація гідрофільних груп білка до води, а гідрофобних – до олії на межі розділу фаз у вигляді міцного адсорбційного шару знижує поверхневий натяг в дисперсних системах і робить їх агрегативно стійкими і одночасно в'язкими. Найбільш широко поширені харчові емульсії «олія у воді» (о/в) і «вода у олії» (в/о), які називаються, відповідно, прямими і зворотними. У виробництві нових форм білкової їжі велике значення набули і емульсії «вода у воді» (в/в). Всі види емульсій з білком отримують механічним диспергуванням однієї рідини в іншій за допомогою мішалок, гомогенізаторів, що забезпечують в полі сил зсуву деформацію дисперсійного середовища з утворенням дрібних частинок. Емульгуючі властивості білків оцінюють за емульгуючою здатністю, емульгуючою ємністю, стабільністю емульсій і т.д., опис яких можна знайти в спеціальній літературі.
Піни (дисперсні системи з газоподібної фазою та рідким або твердим середовищем) отримують механічним розподілом повітря в розчині білка шляхом збивання або за рахунок скипання води, пониження тиску, забезпечення хімічних і мікробіологічних процесів у харчових системах, які містять білок. Так, білки клейковини утворюють піну в хлібному тісті під дією оксиду Карбону (ІУ) при бродінні, а в кондитерському – за рахунок хімічних розпушувачів при виділенні аміаку і оксиду Карбону (ІУ). Піноутворюючі властивості білків характеризуються піноутворюючою здатністю і стабільністю піни. Перший показник вимірюється обсягом піни, віднесеним до маси білка, другий – періодом її напіврозпаду, тобто часом, необхідним для руйнування половини обсягу піни. Обидва показники залежать від рН середовища, концентрації білка, солей, температури, присутності ліпідів, сахарози, харчових волокон, фракційного складу і будови білків. Для якості деяких харчових продуктів велике значення має розмір бульбашок пін, який також залежить від технологічних та інших факторів. Глютенін пшениці, наприклад, утворює бульбашки піни з більшим розміром, ніж гліадин. Після розщеплення дисульфідних зв'язків у гліадині і цілій клейковині розмір бульбашок не змінюється, в той час як у глютеніну він зменшується.
На основі жироемульгуючих властивостей рослинні і тваринні білки застосовуються у виробництві хлібобулочних, борошняних кондитерських виробів, низькокалорійних маргаринів, майонезів, паст, м'ясних продуктів, а піноутворюючі властивості є основою виробництва кондитерських виробів, які треба збивати (бісквітів, десертів, кремів і т. д.). Здатність білкових суспензій до зчеплення з поверхнями металу, пластмас, картону, паперу (адгезія) важлива в процесах транспортування, обробки, формувань і упаковки тестових, сирних, сирних, цукеркових мас, м'ясних і рибних фаршів, текстуратів білка і нових форм білкової їжі (аналогів).
Гелеутворюючі властивості білків характеризуються здатністю їх колоїдного розчину з вільно диспергованого стану переходити в зв‘язнодисперсійне (з утворенням систем, що мають властивості твердих тіл). Пружні властивості гелю, зумовлені утворенням просторової сітки взаємодіючих молекул білка, залежать від мінімальної його концентрації, при якій настає гелеутворення (гель – точки), від рН, від присутності інших білків, солей, полісахаридів. Білок як гелеутворювач повинен утворювати гелі в широкому діапазоні рН, йонної сили, при мінімальній концентрації і з необхідними фізико-хімічними властивостями. До останніх відносяться міцність, твердість, еластичність, тиксотропія (здатність зворотно переходити в текучий стан при механічній обробці і знову утворювати нетекучий гель після зняття навантаження), температура розм'якшення і плавлення, ступінь набухання, здатність до синерезису (відділення дисперсійного середовища з скороченням обсягу гелю), сорбція барвників і ароматичних речовин і т.д. До подібного роду «універсальним» гелеутворювача відноситься желатин, що дозволяє в широких межах забезпечити регулювання хімічного складу і біологічну цінність харчових продуктів.
Розрізняють наповнені, змішані, комплексні, анізотропні гелі та ксерогелі. Наповнені гелі містять інші білки в суспендованому або розчиненому вигляді, змішані складаються з просторових сіток з різними видами білків, у комплексних гелів роль гелеутворювача виконують комплекси білків з іншими сполуками. Відмінною особливістю анізотропних гелів є наявність в їх складі орієнтованих молекул білка, а ксерогелей (сухих гелів) - можливість зберігання їх протягом тривалого часу. На основі жироемульгуючих властивостей рослинні і тваринні білки застосовуються у виробництві хлібобулочних, борошняних кондитерських виробів, низькокалорійних маргаринів, майонезів, паст, м'ясних продуктів, а пінооутворюючі властивості є основою виробництва збивних кондитерських виробів (бісквітів, десертів, кремів і т. д.). Здатність білкових суспензій до зчеплення з поверхнями металу, пластмас, картону, паперу (адгезія) важлива в процесах транспортування, обробки, формувань і упаковки тестових, сирних, сирних, цукеркових мас, м'ясних і рибних фаршів, текстуратів білка і нових форм білкової їжі (аналогів).
В'язко-еластично-пружні властивості. Відмінною властивістю деяких харчових білків є низький рівень полярності функціональних груп. Молекули води, оточуючи частинки білків, відштовхуються, а молекули білків, навпаки, агрегуються з утворенням комплексів з притаманними їм реологічними властивостями (в'язкість, еластичність, пружність). Найбільш вираженим комплексом таких властивостей володіють білки пшеничної клейковини, що обумовлюють текстуру хліба і створюють безперервну фазу у виробах з наповнювачами (зерно, висівки, родзинки). За пружності та еластичності білків відповідальність несе глютеніновая фракція білків.
З метою забезпечення стабільності технологічного процесу, поліпшення якості та розширення асортименту харчових виробів здійснюють регулювання функціональних властивостей. Функціональні властивості білків визначаються їх структурою. Наприклад, в'язкість і гелеутворюючі властивості співвідносяться з розміром і формою молекул, а Вологозв'язуюча здатність, піноутворюючі та емульгуючі властивості корелюють із співвідношенням на поверхні полярних і гідрофобних груп. Всі фактори, які змінюють структуру білків, викликають і регулювання (модифікацію) їх властивостей.
Регулювання функціональних властивостей білків досягається зміною умов їх виділення, сушки, фізичними, фізико-хімічними впливами, ферментативною та хімічною модифікацією. Параметри обробки можуть змінювати амінокислотний і фракційний склад білків, викликати денатурацію, агрегацію або взаємодію з іншими компонентами (ліпідами, вуглеводами).
Найбільш широко використовують фізико-хімічні та ферментативні методи регулювання функціональних властивостей. До фізико-хімічних методів належать переведення білків перед сушінням в розчин кислот, лугів, основ – з метою зміни заряду або йонного складу, теплова денатурація і т.д. При цьому у білків поліпшуються функціональні властивості: підвищується розчинність, гелеутворююча, жироемульгуюча здібність, здатність до текстурування і прядіння. Функціональні властивості білків поліпшуються і за рахунок обробки їх речовинами ліпідної (лецитин, стеароїл-2-лактилат натрію або кальцію, моно- і діацілгліцерін), вуглеводної (пектини, альгінати, каррагінани, камеді) або іншої природи (полівалентні метали). Реакційні групи білків взаємодіють з різними типами сполук з утворенням при цьому композитних формул. Останні посилюють процеси водопоглинання, емульгування жиру, гелеутворення, структурування і тим самим покращують якість готових виробів.