Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Методы с контрастированием

Исследование желудочно-кишечного тракта естественным путем или при помощи контрастной клизмы (ирригоскопия) с помощью препаратов, содержащих сульфат бария.

Контрастирование желчного пузыря и желчных путей препаратами, содержащими йопаноевую кислоту {холевид для пе-роральной холеграфии) или трийодадипиновую кислоту (билиг-ност для внутривенной холеграфии).

Бронхография с использованием лилиодола, цропнлйодона или производных дийод-пирндонуксусной кислоты.

Лимфография, фистулография, метросалышнгография, си-алография, вентрикулография проводятся с помощью препаратов из группы йодированных масел (макового, кунжутного, сурешсового).

Для контрастирования сосудов (артерий я вен), а также мо-чевыводящнх путей используются водорастворимые органические соединения йода: трномбрнн, диодон, карднотраст, верог-рафин, гипак, трийотраст, урографян, уротраст и др.

Контрастирование брюпшой полости, забрюшннного пространства, средостения, желудочно-кишечного тракта рентге-ноотрнцательными контрастными веществами: кислородом, воздухом, закисью азота, двуокисью углерода (пневмоперито-неум, ретропневмоперитонеум, пневмомедиастинография • др.).

Двойное Контрастирование при исследовании органов брюшной полости, мочевого пузыря и др. одновременным использованием рентгеноположителъных и рентютоо1рица1ельных контрастных веществ.

КТ: Это метод рентгенологического исследования, заключающийся в круговом просвечивании объекта рентгеновским излучением и последующем построении с помощью быстродействующей ЭВМ послойного изображения этого объекта. Принципиальным преимуществом КТ перед обычными рентгенологическими методами исследования является возможность определения плотности тканей и сред организма с помощью денситометрии, что позволяет тонко дифференцировать исследуемый субстрат, например, жидкую и свернувшуюся кровь, заполненную жидкостью кисту и опухоль, границы отека тканей и др. КТ дает возможность установить локализацию и распространенность патологического процесса в органе и разных тканях организма, проследить динамику различных патофизиологических процессов, выбрать подходы и объем оперативного вмешательства, осуществить стереотакснчесхую биопсию опухолей” оценить результа-ты лечения.

МРТ: Сильный магнит упорядочивает атомы водорода в ткани, подлежащей исследованию. Радиочастотный импульс преломляет намагниченную сеть атомов водорода в тканях. Возбужденные атомы выстраиваются вдоль оси магнитного поля и продуцируют электрический сигнал, который принимается в кольцевидном приемнике. Затухание сигнала по мере возвращения атомов в состояние равновесия постоянно регистрируется. Возвращение к равновесию называется магнитной релаксацией и является уникальной характеристикой каждого вида ткани, которую можно описать периодами релаксации Т1 и Т2. Эти показатели — важные детерминанты контрастности изображения и интенсивности сигнала при магнитно-резонансном исследовании.

4) Рентгенография - получение теневого аналогового изображения исследуемого органа или области на рентгеновской пленке. Последняя представляет нитро-ацетатную основу, покрытую тонким слоем светочувствительной эмульсии - желатина, содержащую мельчайшие кристаллики галогенида серебра в невозбужденном (не засвеченном) состоянии. Эмульсия чувствительна не только к рентгеновским лучам, но и к дневному свету, поэтому ее сохраняют в светонепроницаемых коробках различного стандартного формата (13x18 см, 13x24 см, 24x30 см, 35x35 см и др.), на которых обычно обозначены марка рентгеновской пленки, чувствительность, срок годности, условия химической обработки и др.

Рентгеновскую пленку в затемненной фотолаборатории помещают в специальную кассету между усиливающими экранами (картонные пластины, покрытые флюоресцирующим слоем) и плотно закрывают. Затем, уложив кассету под исследуемый объект и отметив на ней правую или левую сторону объекта (маркировка свинцовыми буквами), производят снимок.

При рентгенографии пучок рентгеновских лучей, пройдя через тело больного, попадает на рентгеновскую пленку и, возбуждая кристаллики галогенида серебра, образует в эмульсии скрытое электрическое изображение. После химической обработки пленки - последовательно в растворе проявителя (восстановление металлического серебра), фиксирующем растворе (удаление из эмульсии остатков невосстановленного серебра), затем промывки пленки и сушки - изображение становится видимым - черно-белым.

 

5) РАДИОНУКЛИДНАЯ ДИАГНОСТИКА (син. радиоизотопная диагностика) - распознавание патологических изменений органов и систем человека с помощью радиофармацевтических препаратов, в к-рые входят соединения, меченные радионуклидами (радиоизотопами).
Регистрация введенных в организм радиоактивных веществ осуществляется с помощью методов сцинтиграфии, сканирования, радиометрии, радиографии. Сцинтиграфия является наиболее распространенным способом Р. д. Сцинтиграфия позволяет получать изображение органа и по нему судить о его размерах и форме, выявлять очаг патологии в виде участка повышенного или пониженного накопления радионуклида, оценивать функциональное состояние органа по скорости накопления и выведения радиофармпрепарата. Радиометрия предназначена для определения концентрации радиофармпрепарата в органах и тканях человека, что позволяет оценивать функциональное состояние изучаемого органа. Лаб. радиометрия основана на измерении содержания того или иного меченного радионуклидом соединения в отдельных порциях крови, мочи, кала. Этим методом можно определять объем плазмы крови и массу эритроцитов, выделительную функцию почек, усвояемость жиров в кишечнике. Способность ряда радиоактивных соединений накапливаться преимущественно в ткани опухоли используется для выявления злокачественных опухолей головного мозга, костей, легких, лимф. узлов. Радионуклиды технеция активно поглощаются тканями щитовидной железы, что позволяет получать ее изображение на сцинтиграммах и сканограммах.
Степень накопления этих препаратов отражает функциональное состояние щитовидной железы и применяется как диагностический тест для выявления различных форм зоба, кист, опухолей железы. Меченные радионуклидом коллоиды избирательно накапливаются в печени. С помощью этого метода выявляют очаговые (метастазы, кисты) и диффузные (цирроз, атрофия) поражения печени. В диагностике заболеваний почек существенную роль играет ренография радионуклидная, основанная на способности почек поглощать из крови нек-рые введенные в организм вещества, концентрировать их и выделять с мочой. Метод позволяет выявлять нарушения функции почек в начальных стадиях заболевания. На сцинтиграммах и сканограммах патол. процессы в паренхиме почек выглядят как участки пониженного накопления радионуклидов. Введение радиофармпрепаратов в кровеносное русло и наблюдение за продвижением их с помощью гамма-камеры дает возможность исследовать кровоток в различных отделах сердечно-сосудистой системы.
Метод радионуклидного исследования используется для определения концентрации гормонов, ферментов, антигенов и других биологически активных веществ в плазме и сыворотке крови без введения радионуклидов непосредственно в организм. В связи с применением очень малых доз радионуклидов и высокой чувствительностью диагностической аппаратуры лучевое воздействие на организм при Р. д. сведено к минимуму и не представляет опасности для пациента. Р. д. осуществляется в радиологических лабораториях с помощью специальных приборов (см. Радионуклидные диагностические приборы). Развитие Р. д. направлено на разработку методов исследования с использованием новых короткоживущих радионуклидов, внедрение в практику способов компьютерной обработки получаемых данных (эмиссионной компьютерной томографии).

 

6) Физическая основа УЗИ — пьезоэлектрический эффект. При деформации монокристаллов некоторых химических соединений (кварц, титанат бария) под воздействием ультразвуковых волн, на поверхности этих кристаллов возникают противоположные по знаку электрические заряды — прямой пьезоэлектрический эффект. При подаче на них переменного электрического заряда, в кристаллах возникают механические колебания с излучением ультразвуковых волн. Таким образом, один и тот же пьезоэлемент может быть попеременно то приёмником, то источником ультразвуковых волн. Эта часть в ультразвуковых аппаратах называется акустическим преобразователем, трансдюсером или датчиком.

Ультразвук распространяется в средах в виде чередующихся зон сжатия и расширения вещества. Звуковые волны, в том числе и ультразвуковые, характеризуются периодом колебания — временем, за которое молекула (частица) совершает одно полное колебание; частотой — числом колебаний в единицу времени; длиной — расстоянием между точками одной фазы и скоростью распространения, которая зависит главным образом от упругости и плотности среды. Длина волны обратно пропорциональна её частоте. Чем меньше длина волн, тем выше разрешающая способность ультразвукового аппарата. В системах медицинской ультразвуковой диагностики обычно используют частоты от 2 до 10 МГц. Разрешающая способность современных ультразвуковых аппаратов достигает 1-3 мм.

Любая среда, в том числе и ткани организма, препятствует распространению ультразвука, то есть обладает различным акустическим сопротивлением, величина которого зависит от их плотности и скорости ультразвука. Чем выше эти параметры, тем больше акустическое сопротивление. Такая общая характеристика любой эластической среды обозначается термином «импеданс».

Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая — отражается. Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.[2]

В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей, а также разницу в плотностях, образующих границу.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 — 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Особый интерес в диагностике вызывает использование эффекта Допплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.