Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Адсорбція електролітів



При обмінній адсорбції електролітів відбувається вибіркове поглинання одного із йонів електроліту за рахунок витіснення із поверхні йонообмінника йонів того ж знаку. Тобто, в залежності від природи адсорбенту, відбувається обмін катіонів з поверхні на катіони з розчину, або аніонів на аніони з розчину. Тому йонообмінники, що є синтетичними полімерами, смолами діляться на катіоніти і аніоніти. Катіоніти містять в своєму складі йоногенні функціональні групи – СООН, - ОН, - 3Н, -РО4Н, що можуть обмінювати катіони водню на катіони металу. Аніоніти містять групи, що здатні обмінювати аніони, наприклад: -NH3OH.

Особливістю йонообмінної адсорбції є те, що вона протікає в строго еквівалентних кількостях. Тому це може бути використано для кількісного визначення. Крім того використовується для очистки ліків та біологічно активних речовин: вітамінів, антибіотиків, білків, декальцинування крові і коров’ячого молока, а також пом’якшення і обезсолювання води.

У цьому випадку йонний обмін відбувається за схемою:

2Н – катіоніт + СаСl2 ® Са(катіоніт)2 + 2НСl

Аніоніт – ОН + НСl ® Аніоніт – Сl + Н2О

За допомогою йонообмінників очищають різні речовини: пепсин, трипсин, антитіла, гормони, антибіотики, вітаміни, алкалоїди. За допомогою йоніонітів визначають кислотність шлункового соку, регулюють склад йонного середовища у шлунково-кишковому тракті, зв’язують у ньому отруйні речовини, токсини, тощо.

Йонообмін має надзвичайно велике значення для очистки стічних вод, для розробки безвідходних виробництв, для вилучення забруднень із навколишнього середовища.

Для регенерації відпрацьованих йоніонітів їх обробляють відповідно розчинами кислот і лугів.

Якщо адсорбція однієї речовини перевищує адсорбцію іншої, то можна говорити про вибіркову, специфічну адсорбцію.

Правила вибіркової адсорбції сформульовані Панетом і Фаянсом:

1 правило: Кристалічну гратку адсорбенту добудовують ті йони, що входять до її складу, ізоморфні з її йонами, утворюють з йонами цієї гратки важкорозчинні сполуки.

2 правило: На твердій поверхні адсорбенту адсорбуються тільки ті йони, знак заряду яких протилежний знаку заряду поверхні адсорбенту.

Хроматографія.

Хроматографія – це метод розділення і аналізу сумішей речовин, оснований на різному розподілі їх між двома фазами рухомою (РФ) і нерухомою (НФ). При контакті з НФ компоненти суміші розподіляються між рухомою і нерухомою фазами у відповідності з їх властивостями. Хроматографія ділиться в залежності від агрегатного стану фаз, типу взаємодії і технікою виконання (див. схему)

Цікава історія розвитку хроматографії. В 1903 р. російський ботанік М.С. Цвет відкрив спосіб розподілу окремих речовин в суміші – хлорофілів на колонці, заповненій крейдою. Від слова “ хроматос “ колір, назвав метод хроматографічним.

Це зараз те, що зробив Цвєт назвали рідинною адсорбційною хроматографією. І хоч Цвєт створив проявлювальний варіант і заклав основи багатоступінчатого розподілу складних сумішей , цей метод не знайшов застосування до 40-х років.

Були розроблені колонки заповнені цеолітом, але застосування вони набули з появою нових синтетичних йонообмінників. Ізмайлов в 1938 р. розробив новий вид хроматографії, який назвали тонкошаровою хроматографією. Суть методу була в нанесенні на скяну пластинку тонкого шару оксиду алюмінію. Цим методом були розділені алкалоїди деяких лікарських рослин.

Початком бурхливого розвитку хроматографічного аналізу були роботи лауреатів Нобелівської премії Мартина і Сінджа. Ними був застосований метод розподільчої хроматографії. Для опису розмивання хроматографічної зони використали модель теоретичних тарілок, які раніше застосовувались в теорії дистиляції.

Коли Мартіном (1952 р.) були одержані перші результати по газо-рідинній хроматографії, то ці роботи поклали початок дослідженням, спрямованим на розвиток методу. За короткий час були вдосконалені конструкції систем вводу проби, створені чутливі детектори. Метод газової хроматографії був першим, який дістав інструментальне забезпечення.

 
 

Типи хроматографії.

Створення капілярної газової хроматографії дозволило збільшити ефективність газохроматографічного методу. Сучасний газовий хроматограф в поєднанні з масс–спектрометром, який застосовують як детектор, дав добрі результати.

Починаючи з 70-х років проходить бурхливий розвиток рідинної хроматографії. Створені нові сорбенти, які дозволяють аналізувати складні суміші. Зараз це один із методів аналітичної хімії, що найбільш інтенсивно розвивається.




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.