Близкая модификация алгоритма используется при сжатии черно-белых изображений (один бит на пиксел). Полное название данного алгоритма CCITT Group 3. Это означает, что данный алгоритм был предложен третьей группой по стандартизации Международного Консультационного Комитета по Телеграфии и Телефону (Consultative Committee International Telegraph and Telephone). Последовательности подряд идущих черных и белых точек в нем заменяются числом, равным их количеству. А этот ряд уже, в свою очередь, сжимается по Хаффману с фиксированной таблицей.
Определение: Набор идущих подряд точек изображения одного цвета называется серией.Длина этого набора точек называется длиной серии.
В таблице приведенной ниже заданы два вида кодов:
* Коды завершения серий — заданы с 0 до 63 с шагом 1.
* Составные (дополнительные) коды — заданы с 64 до 2560 с шагом 64.
Каждая строка изображения сжимается независимо. Мы считаем, что в нашем изображении существенно преобладает белый цвет, и все строки изображения начинаются с белой точки. Если строка начинается с черной точки, то мы считаем, что строка начинается белой серией длины 0. Например, последовательность длин серий 0, 3, 556, 10, ... означает, что в этой строке изображения идут сначала 3 черных точки, затем 556 белых, затем 10 черных и т.д.
На практике в тех случаях, когда в изображении преобладает черный цвет, мы инвертируем изображение перед компрессией и записываем информацию об этом в заголовок файла.
Алгоритм компрессии выглядит так:
for(по всем строкам изображения) {
Преобразуем строку в набор длин серий;
for(по всем сериям) {
if(серия белая) {
L= длина серии;
while(L > 2623) { // 2623=2560+63
L=L-2560;
ЗаписатьБелыйКодДля(2560);
}
if(L > 63) {
L2=МаксимальныйСостКодМеньшеL(L);
L=L-L2;
ЗаписатьБелыйКодДля(L2);
}
ЗаписатьБелыйКодДля(L);
//Это всегда код завершения
}
else {
[Код аналогичный белой серии,
с той разницей, что записываются
черные коды]
}
}
// Окончание строки изображения
}
Поскольку черные и белые серии чередуются, то реально код для белой и код для черной серии будут работать попеременно.
В терминах регулярных выражений мы получим для каждой строки нашего изображения (достаточно длинной, начинающейся с белой точки) выходной битовый поток вида:
Где ()* — повтор 0 или более раз, ()+.— повтор 1 или более раз, [] — включение 1 или 0 раз.
Для приведенного ранее примера: 0, 3, 556, 10... алгоритм сформирует следующий код: <Б-0><Ч-3><Б-512><Б-44><Ч-10>, или, согласно таблице, 001101011001100101001011010000100 (разные коды в потоке выделены для удобства). Этот код обладает свойством префиксных кодов и легко может быть свернут обратно в последовательность длин серий. Легко подсчитать, что для приведенной строки в 569 бит мы получили код, длиной в 33 бита, т.е. коэффициент сжатия составляет примерно 17 раз.
Вопрос к экзамену: Во сколько раз увеличится размер файла в худшем случае? Почему? (Приведенный в характеристиках алгоритма ответ не является полным, поскольку возможны большие значения худшего коэффициента сжатия. Найдите их.)
Изображение, для которого очень выгодно применение алгоритма CCITT-3 (Большие области заполнены одним цветом.)
Изображение, для которого менее выгодно применение алгоритма CCITT-3. (Меньше областей, заполненных одним цветом. Много коротких “черных” и “белых” серий.)
Заметим, что единственное “сложное” выражение в нашем алгоритме: L2=МаксимальныйДопКодМеньшеL(L) — на практике работает очень просто: L2=(L>>6)*64, где >> — побитовый сдвиг L влево на 6 битов (можно сделать то же самое за одну побитовую операцию & — логическое И).
Упражнение: Дана строка изображения, записанная в виде длин серий — 442, 2, 56, 3, 23, 3, 104, 1, 94, 1, 231 размером 120 байт ((442+2+..+231)/8). Подсчитать коэффициент компрессии этой строки алгоритмом CCITT Group 3.
Приведенные ниже таблицы построены с помощью классического алгоритма Хаффмана (отдельно для черных и белых длин серий). Значения вероятностей появления конкретных длин серий были получены путем анализа большого количества факсимильных изображений.
Таблица кодов завершения:
Длина серии
Код белой подстроки
Код черной подстроки
Длина серии
Код белой подстроки
Код черной подстроки
Таблица составных кодов:
Длина серии
Код белой подстроки
Код черной подстроки
Длина серии
Код белой подстроки
Код черной подстроки
совп. с белой
— // —
— // —
— // —
— // —
— // —
— // —
— // —
— // —
— // —
— // —
— // —
— // —
Если в одном столбце встретятся два числа с одинаковым префиксом, то это опечатка.