Пособие знакомит с основными понятиями сжатия изображений, базовыми алгоритмами и современными направлениями развития теории сжатия изображений. Пособие можно рассматривать как практическое руководство. Оно рассчитано на читателей, знакомых с языком программирования C++ и имеющих представление о базовых алгоритмах. Рекомендуется студентам, аспирантам, научным сотрудникам и инженерам весьма широкого круга специальностей.
Рецензенты:
Баяковский Ю.М., к.ф.-м.н.
Кумсков М.И., д.ф.-м.н.
Издательский отдел факультета Вычислительной Математики и Кибернетики МГУ им. М.В.Ломоносова (лицензия ЛР № 040777 от 23.07.96), 1999 г. — 76 с.
Печатается по решению Редакционно-Издательского Совета факультета Вычислительной Математики и Кибернетики Московского Государственного Университета им. М.В. Ломоносова
ISBN 5-89407-041-4Ó Издательский отдел факультета Вычислительной Математики и Кибернетики МГУ им. М.В. Ломоносова, 1999 г.
Предисловие
Спецкурс “Машинная графика-2” читается на факультете ВМиК МГУ уже более 10 лет. Являясь логическим продолжением общего курса “Машинная графика”, спецкурс более углубленно и детально рассматривает многие аспекты этой интересной области.
В основную программу курса входит широкий круг вопросов: от графических примитивов до построения фотореалистичных изображения.
В этом пособии детально рассматриваются алгоритмы сжатия изображений. При этом изложены классические, давно известные алгоритмы, такие как групповое кодирование, LZW сжатие, кодирование по Хаффману. Рассмотрен в рамках курса и сравнительно недавно появившийся алгоритм JPEG.
Отдельное внимание уделено новым алгоритмам, таким как рекурсивное сжатие и фрактальное сжатие изображений. Рассмотрены вопросы корректного сравнения алгоритмов компрессии изображений и вопросы построения мер оценки потерь качества изображения.
Сейчас в стадии подготовки находится гипертекстовый вариант этого пособия, который будет выложен на сайте нашего курса по адресу http://graphics.cs.msu.su/courses.
Ю.М. Баяковский 13.11.98
Содержание
Общие положения алгоритмов сжатия изображений.....................
Последнее изменение: 20.12.2012 1:51:00 (Версия 32 с 26.10.98 1:05) Напечатан: 14.12.2015
С автором можно связаться по адресу dm@amc.ru
Общие положения алгоритмов сжатия изображений
Введение
В течение последних 10 лет в рамках компьютерной графики бурно развивается совершенно новая область — алгоритмы архивации изображений. Появление этой области обусловлено тем, что изображения — это своеобразный тип данных, характеризуемый тремя особенностями:
1) Изображения (как и видео) занимают намного больше места в памяти, чем текст. Так скромная, не очень качественная иллюстрация на обложке книги размером 500x800 точек занимает 1.2 Мб — столько же, сколько художественная книга из 400 страниц (60 знаков в строке, 42 строки на странице). В качестве примера можно рассмотреть также, сколько тысяч страниц текста мы сможем поместить на CD-ROM, и как мало там поместится качественных несжатых фотографий. Эта особенность изображений определяет актуальность алгоритмов архивации графики.
2) Второй особенностью изображений является то, что человеческое зрение при анализе изображения оперирует контурами, общим переходом цветов и сравнительно нечувствительно к малым изменениям в изображении. Таким образом, мы можем создать эффективные алгоритмы архивации изображений, в которых декомпрессированное изображение не будет совпадать с оригиналом, однако человек этого не заметит. Данная особенность человеческого зрения позволила создать специальные алгоритмы сжатия, ориентированные только на изображения. Эти алгоритмы обладают очень высокими характеристиками.
3) Мы можем легко заметить, что изображение в отличие, например, от текста обладает избыточностью в 2-х измерениях. Т.е. как правило, соседние точки, как по горизонтали, так и по вертикали в изображении близки по цвету. Кроме того, мы можем использовать подобие между цветовыми плоскостями R, G и B в наших алгоритмах, что дает возможность создать еще более эффективные алгоритмы. Таким образом, при создании алгоритма компрессии графики мы используем особенности структуры изображения.
Всего на данный момент известно порядка трех семейств алгоритмов, которые используются исключительно для сжатия изображений, и применяемые в них методы практически невозможно применить к архивации каких-либо еще видов данных.
Для того, чтобы говорить об алгоритмах сжатия изображений, мы должны определиться с несколькими важными вопросами:
1) Какие критерии мы можем предложить для сравнения различных алгоритмов?
2) Какие классы изображений существуют?
3) Какие классы приложений, использующие алгоритмы компрессии графики, существуют, и какие требования они предъявляют к алгоритмам?
Рассмотрим эти вопросы подробнее.
Классы изображений
Статические растровые изображения, представляют собой двумерный массив чисел. Элементы этого массива называют пикселами (от английского pixel — picture element). Все изображения можно подразделить на две группы — с палитрой и без нее. У изображений с палитрой в пикселе хранится число — индекс в некотором одномерном векторе цветов, называемом палитрой. Чаще всего встречаются палитры из 16 и 256 цветов.
Изображения без палитры бывают в какой-либо системе цветопредставления и в градациях серого (grayscale). Для последних значение каждого пиксела интерпретируется как яркость соответствующей точки. Встречаются изображения с 2, 16 и 256 уровнями серого. Одна из интересных практических задач заключается в приведении цветного или черно-белого изображения к двум градациям яркости, например, для печати на лазерном принтере. При использовании некой системы цветопредставления каждый пиксел представляет собой запись (структуру), полями которой являются компоненты цвета. Самой распространенной является система RGB, в которой цвет представлен значениями интенсивности красной (R), зеленой (G) и синей (B) компонент. Существуют и другие системы цветопредставления, такие, как CMYK, CIE XYZccir60-1 и т.п. Ниже мы увидим, как используются цветовые модели при сжатии изображений с потерями.
Для того, чтобы корректнее оценивать степень сжатия, нужно ввести понятие класса изображений. Под классом будет пониматься некая совокупность изображений, применение к которым алгоритма архивации дает качественно одинаковые результаты. Например, для одного класса алгоритм дает очень высокую степень сжатия, для другого — почти не сжимает, для третьего — увеличивает файл в размере. (Известно, что многие алгоритмы в худшем случае увеличивают файл.)
Рассмотрим следующие примеры неформального определения классов изображений:
1) Класс 1. Изображения с небольшим количеством цветов (4-16) и большими областями, заполненными одним цветом. Плавные переходы цветов отсутствуют. Примеры: деловая графика — гистограммы, диаграммы, графики и т.п.
2) Класс 2. Изображения, с плавными переходами цветов, построенные на компьютере. Примеры: графика презентаций, эскизные модели в САПР, изображения, построенные по методу Гуро.
3) Класс 3. Фотореалистичные изображения. Пример: отсканированные фотографии.
4) Класс 4. Фотореалистичные изображения с наложением деловой графики. Пример: реклама.
Развивая данную классификацию, в качестве отдельных классов могут быть предложены некачественно отсканированные в 256 градаций серого цвета страницы книг или растровые изображения топографических карт. (Заметим, что этот класс не тождественен классу 4). Формально являясь 8- или 24-битными, они несут даже не растровую, а чисто векторную информацию. Отдельные классы могут образовывать и совсем специфичные изображения: рентгеновские снимки или фотографии в профиль и фас из электронного досье.
Достаточно сложной и интересной задачей является поиск наилучшего алгоритма для конкретного класса изображений.
Итог: Нет смысла говорить о том, что какой-то алгоритм сжатия лучше другого, если мы не обозначиликлассы изображений, на которых сравниваются наши алгоритмы.
1) Класс 1. Характеризуются высокими требованиями ко времени архивации и разархивации. Нередко требуется просмотр уменьшенной копии изображения и поиск в базе данных изображений.Примеры: Издательские системы в широком смысле этого слова. Причем как готовящие качественные публикации (журналы) с заведомо высоким качеством изображений и использованием алгоритмов архивации без потерь, так и готовящие газеты, и информационные узлы в WWW — где есть возможность оперировать изображениями меньшего качества и использовать алгоритмы сжатия с потерями. В подобных системах приходится иметь дело с полноцветными изображениями самого разного размера (от 640х480 — формат цифрового фотоаппарата, до 3000х2000) и с большими двуцветными изображениями. Поскольку иллюстрации занимают львиную долю от общего объема материала в документе, проблема хранения стоит очень остро. Проблемы также создает большая разнородность иллюстраций (приходится использовать универсальные алгоритмы). Единственное, что можно сказать заранее, это то, что будут преобладать фотореалистичные изображения и деловая графика.
2) Класс 2. Характеризуется высокими требованиями к степени архивации и времени разархивации. Время архивации роли не играет. Иногда подобные приложения также требуют от алгоритма компрессии легкости масштабирования изображения под конкретное разрешение монитора у пользователя. Пример: Справочники и энциклопедии на CD-ROM. С появлением большого количества компьютеров, оснащенных этим приводом (В США — у 50% машин) достаточно быстро сформировался рынок программ, выпускаемых на лазерных дисках. Несмотря на то, что емкость одного диска довольно велика (примерно 650 Мб), ее, как правило, не хватает. При создании энциклопедий и игр большую часть диска занимают статические изображения и видео. Таким образом, для этого класса приложений актуальность приобретают существенно асимметричные по времени алгоритмы (симметричность по времени — отношение времени компрессии ко времени декомпрессии).
3) Класс 3. Характеризуется очень высокими требованиями к степени архивации. Приложение клиента получает от сервера информацию по сети. Пример: Новая быстро развивающаяся система “Всемирная информационная паутина” — WWW. В этой гипертекстовой системе достаточно активно используются иллюстрации. При оформлении информационных или рекламных страниц хочется сделать их более яркими и красочными, что естественно сказывается на размере изображений. Больше всего при этом страдают пользователи, подключенные к сети с помощью медленных каналов связи. Если страница WWW перенасыщена графикой, то ожидание ее полного появления на экране может затянуться. Поскольку при этом нагрузка на процессор мала, то здесь могут найти применение эффективно сжимающие сложные алгоритмы со сравнительно большим временем разархивации. Кроме того, мы можем видоизменить алгоритм и формат данных так, чтобы просматривать огрубленное изображение файла до его полного получения.
Можно привести множество более узких классов приложений. Так свое применение машинная графика находит и в различных информационных системах. Например, уже становится привычным исследовать ультразвуковые и рентгеновские снимки не на бумаге, а на экране монитора. Постепенно в электронный вид переводят и истории болезней. Понятно, что хранить эти материалы логичнее в единой картотеке. При этом без использования специальных алгоритмов большую часть архивов займут фотографии. Поэтому при создании эффективных алгоритмов решения этой задачи нужно учесть специфику рентгеновских снимков — преобладание размытых участков.
В геоинформационных системах — при хранении аэрофотоснимков местности — специфическими проблемами являются большой размер изображения и необходимость выборки лишь части изображения по требованию. Кроме того, может потребоваться масштабирование. Это неизбежно накладывает свои ограничения на алгоритм компрессии.
В электронных картотеках и досье различных служб для изображений характерно подобие между фотографиями в профиль, и подобие между фотографиями в фас, которое также необходимо учитывать при создании алгоритма архивации. Подобие между фотографиями наблюдается и в любых других специализированных справочниках. В качестве примера можно привести энциклопедии птиц или цветов.
Итог: Нет смысла говорить о том, что какой-то конкретный алгоритм компрессии лучше другого, если мы не обозначиликласс приложений, для которого мы эти алгоритмы собираемся сравнивать.