№1Закон сохранения момента импульса накладывает ограничения на возможные переходы электрона в атоме с одного уровня на другой (правило отбора). В энергетическом спектре атома водорода (см. рис.) запрещенным является переход
№2Закон сохранения момента импульса накладывает ограничения на возможные переходы электрона в атоме с одного уровня на другой (правило отбора). В энергетическом спектре атома водорода (см. рис.) запрещенным является переход …
№3 На рисунке дана схема энергетических уровней атома водорода. Наибольшая длина волны спектральной линии (в нм) серии Лаймана равна (h = 6,63·10-34Дж·с)
№4На рисунке схематически изображены стационарные орбиты электрона в атоме водорода согласно модели Бора, а также показаны переходы электрона с одной стационарной орбиты на другую, сопровождающиеся излучением кванта энергии. В ультрафиолетовой области спектра эти переходы дают серию Лаймана, в видимой – серию Бальмера, в инфракрасной – серию Пашена. Наибольшей частоте кванта в серии Пашена (для переходов, представленных на рисунке) соответствует переход …
№5 На рисунке дана схема энергетических уровней атома водорода, а также условно изображены переходы электрона с одного уровня на другой, сопровождающиеся излучением кванта энергии. В ультрафиолетовой области спектра эти переходы дают серию Лаймана, в видимой области – серию Бальмера, в инфракрасной области – серию Пашена и т.д. Отношение максимальной частоты линии в серии Пашена к минимальной частоте линии в серии Бальмера равно …
№6На рисунке дана схема энергетических уровней атома водорода, а также условно изображены переходы электрона с одного уровня на другой, сопровождающиеся излучением кванта энергии. В ультрафиолетовой области спектра эти переходы дают серию Лаймана, в видимой области – серию Бальмера, в инфракрасной области – серию Пашена и т.д. Если R – постоянная Ридберга, то максимальная частота линии в серии Пашена равна …
№7Собственные функции электрона в атоме водорода содержат три целочисленных параметра: n, l и m. Параметр n называется главным квантовым числом, параметры l и m – орбитальным (азимутальным) и магнитным квантовыми числами соответственно. Орбитальное квантовое число l определяет …
№8Закон сохранения импульса накладывает ограничения на возможные переходы электрона в атоме с одного уровня на другой (правило отбора). В энергетическом спектре атома водорода запрещенным переходом является …
№9
Собственные функции электрона в атоме водорода содержат три целочисленных параметра . Параметр называется главным квантовыми числами соответственно. Магнитное квантовое число определяет …
Уравнение Шредингера
№1Стационарное уравнение Шредингера имеет вид . . Это уравнение описывает …
№2Стационарное уравнение Шредингера в общем случае имеет вид . Здесь U= U (x, y,z) - потенциальная энергия микрочастицы. Движение частицы в трехмерном бесконечно глубоком потенциальном ящике описывает уравнение …
№3 Стационарное уравнение Шредингера в общем случае имеет вид . Здесь U= U (x, y,z) - потенциальная энергия микрочастицы. Движение частицы вдоль оси ОХ под действием квазиупругой силы описывает уравнение …
№4 Стационарное уравнение Шредингера имеет вид . Это уравнение записано для….
№5
Установите соответствия между квантовомеханическими задачами и уравнениями Шредингера для них.
№6С помощью волновой функции ,являющейся решением уравнения Шредингера ,можно определить….
№7 Момент импульса электрона в атоме и его пространственные ориентации могут быть условно изображены векторной схемой, на которой длина вектора пропорциональна модулю орбитального момента импульса электрона. На рисунке приведены возможные ориентации вектора . Значение орбитального квантового числа для указанного состояния равно …
№8 Момент импульса электрона в атоме и его пространственные ориентации могут быть условно изображены векторной схемой, на которой длина вектора пропорциональна модулю орбитального момента импульса электрона. На рисунке приведены возможные ориентации вектора . Величина орбитального момента импульса (в единицах ) для указанного состояния равна …
№9Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками в состоянии с квантовым числом n = 3. Если Ψ-функция электрона в этом состоянии имеет вид, указанный на рисунке, то вероятность обнаружить электрон в интервале от до равна …
№10Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками в состоянии с квантовым числом n = 4. Если Ψ -функция электрона в этом состоянии имеет вид, указанный на рисунке, то вероятность обнаружить электрон в интервале от до до равна
№11На рисунках схематически представлены графики распределения плотности вероятности обнаружения электрона по ширине одномерного потенциального ящика с бесконечно высокими стенками для состояний с различными значениями главного квантового числа n.
В состоянии с n = 4 вероятность обнаружить электрон в интервале от до l равна …
№12На рисунках схематически представлены графики распределения плотности вероятности обнаружения электрона по ширине одномерного потенциального ящика с бесконечно высокими стенками для состояний с различными значениями главного квантового числа n. В состоянии с n = 4 вероятность обнаружить электрон в интервале от до равна …
№13Собственные функции электрона в одномерном потенциальном ящике с бесконечно высокими стенками имеют вид где ширина ящика, квантовое число, имеющее смысл номера энергетического уровня. Если число узлов функции на отрезке и , то равно…
Ядерные реакции
№1На графике в полулогарифмическом масштабе показана зависимость изменения числа радиоактивных ядер изотопа от времени. Среднее время жизни данного изотопа равно ______ мин. Ответ округлите до целого числа.
№2На графике в полулогарифмическом масштабе показана зависимость изменения числа радиоактивных ядер изотопа от времени. Постоянная радиоактивного распада в равна …(ответ округлите до целых)
№3Чтобы уран превратился в стабильный изотоп свинца , должно произойти …
№4 Если через интервал времени осталось нераспавшимся 25% первоначального количества радиоактивных ядер, то это время равно _____ периодам(-у) полураспада.
№5Если через интервал времени распалось 75 % первоначального количества радиоактивных ядер, то это время равно _____ периода (-ам, -у) полураспада.
№6-распадом является ядерное превращение, происходящее по схеме …
№7 При бомбардировке ядер изотопа азота нейтронами образуются изотоп бора и …
№8
В ядерной реакции буквой обозначена частица …
№9Два ядра гелия слились в одно ядро, и при этом был выброшен протон. В результате образовалось ядро …