Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Метод гібридизації соматичних клітин



Генеалогічний метод

Основний метод генетичного аналізу в людини полягає в складанні та вивченні родоводів. Генеалогія – історія родини, сукупність відомостей про походження особини; встановлення близькоспоріднених зв’язків між індивідуумами й складання схем-родоводів. Цей метод був введений в науку в кінці ХІХ століття Ф. Гальтоном.

Це найбільш універсальний метод вивчення спадковості людини. Він використовується завжди при підозрі на спадкову патологію, дозволяє встановити у більшості пацієнтів:

· спадковий характер ознаки;

· тип успадкування і пенетрантність алеля;

· характер зчеплення генів і здійснювати картування хромосом;

· інтенсивність мутаційного процесу;

· розшифрування механізмів взаємодії генів.

Цей метод застосовують при медико-генетичному консультуванні.

Суть його полягає в тому, щоб з'ясувати родинні зв’язки і прослідкувати наявність нормальної і патологічної ознаки серед близьких і далеких родичів у даній сім'ї. Він складається з двох етапів: складання родоводу і генеалогічний аналіз.

Збирання даних починається з пробанда – особи, родовід якої необхідно скласти. Ним може бути хвора або здорова особа – носій якої-небудь ознаки, або людина, яка звернулася за порадою до лікаря-генетика. Брати і сестри пробанда називаються сибсами.

При складанні родовідних таблиць користуються умовними позначеннями, запропонованими Г. Юстом у 1931 році (рис. 11).

Після складання родоводу до нього додається письмове пояснення – легенда родоводу. У легенді мають знайти віддзеркалення такі відомості:

1. результати клінічного і позаклінічного обстеження про банда;

2. відомості про особистий огляд родичів пробанда;

3. зіставлення результатів особистого огляду пробанда з відомостями опитування його родичів;

4. письмові відомості про родичів, які проживають в іншій місцевості;

5. висновок щодо типу успадкування хвороби або ознаки.

Після складання родоводу починається другий етап – генеалогічний аналіз, метою якого є встановлення генетичних закономірностей. Аналіз родоводу дає можливість дійти висновку щодо характеру ознаки (спадкова чи ні), типу успадкування (аутосомно-домінантний, аутосомно-рецесивний або зчеплений зі статтю), зиготність пробанда (гомо- або гетерозиготний), ступеня пенетрантності й експресивності досліджуваного гена.

Рисунок 11 – Генетична символіка для складання родоводу

Аналіз родоводів при різних типах успадкування показує, що всі хвороби, детерміновані мутантним геном, підпорядковуються класичним законам Менделя.

Близнюковий метод

Цей метод полягає у вивченні закономірностей успадкування ознак моно- і дизиготних близнюків. На даний час його широко застосовують у вивченні спадковості і мінливості людини для визначення співвідносної ролі спадковості і середовища у формуванні нормальних і патологічних ознак. Він дозволяє виявити спадковий характер ознаки, визначити пенетрантність алеля, оцінити ефективність дії на організм деяких зовнішніх чинників (лікарські препарати, навчання, виховання).

Суть методу полягає у порівнянні прояву ознаки в різних групах близнюків із зважанням на подібність або різницю їхніх генотипів. Монозиготні близнюки, що розвиваються з однієї заплідненої яйцеклітини, генетично ідентичні, оскільки мають 100% загальних генів. Тому серед монозиготних близнюків спостерігається дуже високий відсоток конкордатних пар, у яких розвивається ознака в обох близнюків. Конкордантність – це відсоток подібності за досліджуваною ознакою. Порівняння монозиготних близнюків, що виховуються за різних умов постембріонального періоду, дозволяє виявити ознаки, у формуванні яких істотна роль належить чинникам середовища. За цими ознаками між близнюками спостерігається дискордантність, тобто розходження.

Для оцінки ролі спадковості у розвитку тієї чи іншої ознаки роблять розрахунки за формулою

,

де Н – коефіцієнт спадковості, ОБ – одно- і ДБ – двояйцеві близнюки.

При Н, що дорівнює одиниці, ознака цілком визначається спадковим компонентом; при Н, що дорівнює нулю, визначну роль відіграє вплив середовища. Коефіцієнт, який близький до 0,5 свідчить про приблизно однаковий вплив спадковості і середовища на формування ознаки.

Наприклад, конкордатність монозиготних близнюків за шизофренією дорівнює 70%, дизиготних – 13%. Тоді

Вплив середовища визначається формулою С=100%-Н. Тоді С=100% – 65% = 35%. Отже, у випадку шизофренії переважає вплив спадковості, але суттєву роль відіграють і умови середовища.

Таблиця 4 – Конкордантність деяких ознак людини у однояйцевих (ОБ) і двояйцевих (ДБ) близнят, %

Ознаки Конкордантність (%)
ОБ ДБ
Нормальні:
Групи крові (АВ0)
Колір очей 99,5
Колір волосся
Патологічні:
Клишоногість
Щілина губи
Шизофренія
Гіпертонія 26,2

На підставі даних таблиці видно, що для багатьох захворювань поряд із спадковим компонентом значну роль відіграють умови середовища, при яких відбувається реалізація генотипу у фенотипі.

Труднощі близнюкового методу пов’язані, по-перше, з відносно низькою частотою народження близнюків у популяції (1:86 – 1:88), що ускладнює добір достатньої кількості пар з даною ознакою; по-друге, з ідентифікацією монозиготності близнюків, що має велике значення для достовірних результатів.

Метод дерматогліфіки

Дерматогліфіка (від грец. derma – шкіра, gliphe – ма-

лювати) – це визначення рельєфу шкіри на долонях (пальмоскопія), пальцях (дактилоскопія), підошвах (плантоскопія). На відміну від інших частин тіла тут є епідермальні виступи – гребені, які утворюють складні візерунки. Встановлено, що візерунки є індивідуальною характеристикою людини і не змінюються впродовж життя. Дерматогліфічні дослідження мають важливе значення у визначенні зиготності близнюків, у діагностиці багатьох спадкових захворювань, а також в окремих випадках спірного батьківства, у судовій медицині, у криміналістиці для ідентифікації особи.

Дактилоскопія. Папілярні лінії на подушечках пальців вивчають на відбитках, які наносять на папір після змащування пальців друкарською фарбою. Детальне дослідження візерунків проводять за допомогою лупи. Папілярні лінії різних напрямків ніколи не перетинаються, але можуть у певних пунктах зближуватися, утворюючи трирадіуси, або дельти. Не дивлячись на індивідуальну неповторність візерунків, виділяють три їх основні типи: дуги А (англ. arch – дуга); петлі L (англ. lor – петля) і завиткові візерунки W (англ. whorl – завиток). Дугові візерунки зустрічаються дуже рідко (6%), у цьому Рисунок 12 – Пальцеві візерунки: 1-завиток, 2- петля,

візерунку є лише один 3- дуга

напрям папілярних

ліній. Петлеві візерунки найбільш поширені (близько 60%). Це замкнений з одного боку візерунок, у якому лінії, не доходять до протилежного краю. Завиткові візерунки займають середнє місце за поширеністю (34%). Вони мають вигляд концентричних кіл, овалів, спіралей. Завитки мають дві дельти. На пальцях ніг є також три типи візерунків, але у іншому співвідношенні (більший процент дуг). Тактильні візерунки на підошві у людини редуковані порівняно з мавпами і займають меншу площу.

Пальмоскопія. Рельєф долоні дуже складний, у ньому виділяють ряд полів, подушечок і долонних ліній. Центральну долонну ямку оточують шість підвищень – подушечок. Біля основи великого пальця – тенар, біля протилежного краю долоні – гіпотенар, навпроти міжпальцевих проміжків знаходяться міжпальцеві подушечки. Біля основи ІІ, ІІІ, ІV i V пальців знаходяться пальцеві трирадіуси - місця, у яких сходяться три напрямки папілярних ліній. Їх позначають латинськими літерами a, b, c, d. Поблизу браслетної складки, яка відділяє кисть від передпліччя, розміщується головний (осьовий) долонний трирадіус (t). Якщо провести лінії від трирадіусів a і d до t, то утворюється кут долоні аtd (рис. 13), у нормі він не перевищує 57°.

Рисунок 13 – Кут atd в нормі і при хромосомних

аномаліях:

1 – синдром Патау;

2 – синдром Дауна;

3 – синдром Шерешевського-Тернера;

4 – норма;

5 – синдром Клайнфельтера

На формування дерматогліфічних візерунків можуть впливати деякі пошкоджуючі фактори на ранніх стадіях ембріонального розвитку. Так, при внутрішньоутробній дії вірусу корової краснухи у дитини спостерігаються певні відхилення у візерунках, які подібні до таких при хворобі Дауна. Метод дерматогліфіки використовують при уточненні діагнозу хромосомних синдромів у людей зі змінами каріотипу. Менше показові дані дерматогліфічного аналізу при захворюваннях генної природи.

Біохімічний метод використовується для діагностики хвороб обміну речовин, причиною яких є зміни активності окремих ферментів. За допомогою біохімічних методів відкрито близько 5000 молекулярних хвороб, які є наслідком прояву мутантних генів. При різних типах захворювання можна або визначити сам аномальний білок-фермент, або проміжні продукти обміну. Дефекти ферментів установлюють шляхом визначення вмісту в крові і сечі продуктів метаболізму, що є результатом функціонування даного білка. Дефіцит кінцевого продукту, що супроводжується накопиченням проміжних і побічних речовин порушеного метаболізму, свідчить про дефіцит ферменту в організмі. Об’єктами біохімічної діагностики є сеча, піт, плазма і сироватка крові, формені елементи крові, культури клітин (фібробласти і лімфоцити). Програми первинної біохімічної діагностики спадкових хвороб можуть бути масовими і селективними. Відомі масові просіюючи програми для діагностики фенілкетонурії, спадкового гіпотиреозу та ін.

Біохімічна діагностика спадкових порушень обміну включає два етапи. На першому етапі вибирають ймовірні випадки захворювань, на другому більш точними і складними методами уточнюють діагноз захворювання. Для визначення в крові, сечі або амніотичній рідині проміжних, побічних і кінцевих продуктів обміну, крім якісних реакцій із специфічними реактивами на певні речовини, використовують хроматографічні методи дослідження амінокислот та інших органічних речовин.

Показаннями для застосування біохімічних методів діагностики новонароджених є такі симптоми: судоми, кома, блювота, гіпотонія, жовтяниця, специфічний запах сечі і поту, ацидоз, припинення росту. У дітей біохімічні методи використовуються у випадках підозри на спадкові хвороби обміну речовин (затримка фізичного і розумового розвитку, втрата набутих функцій, специфічна для будь-якої спадкової хвороби клінічна картина).

Порушення первинних продуктів генів виявляють за допомогою біохімічних методів, а локалізацію відповідних ушкоджень у спадковому матеріалі – за допомогою методів молекулярної генетики.

Цитогенетичний метод

Принципи цитогенетичних досліджень сформувалися протягом 20-30-х років ХХ століття на класичному об’єкті генетики – дрозофілі і деяких рослинах. Метод ґрунтується на мікроскопічному дослідженні хромосом. Нормальний каріотип людини становить 46 хромосом, із них 22 пари аутосом і 2 статеві хромосоми. До 1956 р. кількість хромосом у людини не була точно встановлена, це вдалося шведським вченим Д. Тийо і А. Левану. На той час у лабораторії успішно культивувалися клітини людини (клітини кісткового мозку, культури фібробластів або лейкоцитів периферичної крові, поділ яких стимулювали фітогемаглютиніном). За допомогою колхіцину зупиняли процес мітозу на стадії метафази, оскільки інактивувалися нитки веретена поділу; потім клітини оброблялися гіпотонічним розчином. У результаті набрякання і розривання клітинних мембран хромосоми виявлялися вільними і віддаленими одна від одної (метафазні пластинки). Це дало можливість підрахувати їх і проаналізувати. Найважливіше завдання полягає у вмінні розрізняти індивідуальні хромосоми у даній метафазній пластинці.

Цей метод застосовується для діагностики хромосомних захворювань. Хромосомні хвороби – це широка група спадкових патологічних станів, причиною якого є зміни кількості хромосом або порушення їх структури. У першому випадку у загальній генетиці використовується термін «геномні мутації», у іншому – «хромосомні мутації».

Існує багато аномалій каріотипу: аномалії аутосом та аномалії статевих хромосом.

Найвідомішими аномаліями аутосом є трисомія-21, трисомія-13 і трисомія-18.

Трисомія-21 (синдром Дауна) була описана англійським лікарем Л. Дауном у 1866 р. Причина патології – зайва 21-ша хромосома в каріотипі (трисомія 21-ї хромосоми) – каріотип 47, 21+. Хвороба Дауна – найбільш поширена з усіх хромосомних аномалій. Частота народжуваності дітей становить 1:500 – 1:700 новонароджених. Синдром Дауна характеризується такими ознаками: укорочені кінцівки, маленький череп, аномалії будови обличчя (плескаве, широке перенісся). Очні щілини вузькі, з косим розрізом, є складка верхньої повіки біля внутрішнього кута ока - епікант. Спостерігається різного ступеня розумова відсталість.

Трисомія-13 (синдром Патау). Каріотип – 47, 13+. Вперше ця аномалія каріотипу описана у 1960 р. К. Патау. При цій аномалії спостерігаються щілина м’якого і твердого піднебіння, незаростання губи, недорозвинення або відсутність очей, неправильно сформовані вуха, деформація кисті і стопи, трапляються полідактилія і синдактилія (зрощення пальців), численні порушення з боку внутрішніх органів – серця, нирок, травної системи. Частота народження дітей із синдромом Патау – 1:14 500 народжених живими.

Трисомія-18 (синдром Едвордса) описана у 1960 р. Каріотип 47, 18+. За даними різних авторів частота цієї хвороби коливається від 1:4500 до 1:6500. Смерть настає у 2-3-місячному віці. Зовнішній метод хворих настільки своєрідний, що дозволяє поставити діагноз до цитологічного аналізу. Череп незвичайної форми: вузький лоб і широка з виступом потилиця, дуже низько розташовані, деформовані вуха, постійна ознака – недорозвинення нижньої щелепи. Пальці рук широкі і короткі, характерна аномалія кисті – поперечна складка долоні.

Аномалія статевих хромосом. При дозріванні статевих клітин у людини може спостерігатися порушення розходження і статевих хромосом. Є дані, що це відбувається у 0,3% всіх гамет. Внаслідок цього у яйцеклітині замість однієї Х-хрмосоми можуть виявитися дві або не буде жодної. При заплідненні таких аномальних яйцеклітин нормальними сперматозоїдами будуть утворюватися зиготи, у яких змінена кількість статевих хромосом. Подібне явище може спостерігатися і при сперматогенезі. Аномалії кількості статевих хромосом бувають у вигляді моно- і полісомій.

Моносомія-Х (синдром Шерешевського–Тернера). Каріотип 45, Х0, фенотип жіночий. Це єдина сумісна з життям моносомія. Частота появи цієї аномалії 1:4000 – 1:5000, вона уперше була описана у 1925 р. ендокринологом Н. А. Шерешевським, а потім вивчалася Г. Тернером (1938). Проте причини цієї аномалії стали зрозумілими тільки в світлі досягнень цитогенетики. Основна патологічна ознака при цьому синдромі – недорозвинення яєчників. Своєрідна диспропорція тіла: більше розвинена верхня частина: широкі плечі і вузький таз, нижні кінцівки вкорочені. Зріст завжди нижчий від середньої норми (135-145 см). Характерні зовнішні ознаки: коротка шия зі складками шкіри, які йдуть від потилиці («шия сфінкса»), низький ріст волосся на потилиці, «антимонголоїдний» розріз очей (внутрішні кути очей розташовуються вище, ніж зовнішні).

Трисомія-Х. Каріотип 47, ХХХ. При такому комплексі народжується дівчинка, частота синдрому 1:1000 (0,1%). Фенотип різний. Більшість жінок має ряд певних відхилень у фізичному розвитку, порушення функції яєчників, передчасний клімакс, інтелектуальну неповноцінність, хоч у частини хворих ці ознаки і не проявляються.

Синдром Клайнфельтера спостерігається у осіб з чоловічим фенотипом. Каріотип 47, ХХY. Частота синдрому 1:1000 (0,1%). Характерною особливістю є недорозвинення сім’яників і відсутність сперматогенезу. Ця ендокринна недостатність визначає й інші ознаки фенотипу: розвивається астенічний, євнухоподібний тип будови тіла: вузькі плечі, широкий таз, відкладання жиру за жіночим типом, мало розвинена мускулатура, тобто спостерігається стирання статевих відмінностей, проявляються деякі конституційні ознаки протилежної статі.

Кожний синдром характеризується специфічним комплексом окремих аномалій. Точне підтвердження діагнозу дає аналіз каріотипу.

Метод гібридизації соматичних клітин

Соматичні клітини містять увесь обсяг генетичної інформації. Це дає можливість вивчати багато питань генетики людини, які неможливо досліджувати на цілому організмі. Соматичні клітини людини отримують із різних органів (шкіра, кістковий мозок, клітини крові, тканини ембріонів). Найчастіше використовують клітини сполучної тканини (фібробласти) і лімфоцити крові. Культивування клітин поза організмом дозволяє отримувати достатню кількість матеріалу для дослідження, який не завжди можна взяти у людини без шкоди для здоров’я.

У 1960 р. французький біолог Ж. Барський, вирощуючи поза організмом у тканинній культурі клітини двох ліній мишей, виявив, що деякі клітини за своїми морфологічними і біохімічними ознаками були проміжними між вихідними батьківськими клітинами. Ці клітини виявилися гібридними. Таке спонтанне злиття клітин у культурі тканини відбувається досить рідко. Згодом виявилося, що частота гібридизації соматичних клітин підвищується при введенні у культуру клітин РНК-вмісного вірусу парагрипу Сендай, який змінює властивості клітинних мембран і робить можливим злиття клітин. Вірус Сендай попередньо опромінювався ультрафіолетом. Такий інактивований вірус втрачав свої вірулентні властивості, але зберігав здатність впливати на злиття клітин. Під впливом такого вірусу у змішаній культурі двох типів клітин утворюються клітини, які містять у спільній цитоплазмі ядра обох батьківських клітин – гетерокаріони. Більшість гетерокаріонів гине, але ті, які містять тільки два ядра, часто продовжують свій розвиток, розмножуються поділом. Після мітозу і наступного поділу цитоплазми із двоядерного гетерокаріону утворюється дві одноядерні клітини, кожна з яких являє собою синкаріон – справжню гібридну клітину, яка має хромосоми обох батьківських клітин.

курка тощо. Наприклад гібридні клітини людини і миші мають 43 пари хромосом: 23 – від людини і 20 від миші. Згодом при розмноженні цих клітин доля вихідних геномів різна. Відбувається поступова елімінація (зникнення) хромосом того організму, клітини якого мають повільніший темп розмноження. За допомогою цього методу проводиться картування хромосом у людини.Û комар, муха Û миша, людина ÛГібридизація соматичних клітин проводяться у широких межах не тільки між різними видами, але і типами: людина

Використання методу гібридизації соматичних клітин дає можливість вивчати механізми первинної дії генів і взаємодію генів. Культури соматичних клітин використовуються для визначення мутагенної дії факторів навколишнього середовища.

Методи моделювання

Теоретичну основу біологічного моделювання у генетиці дає закон гомологічних рядів спадкової мінливості М. І. Вавілова, за яким генетично близькі види і роди характеризуються подібними рядами мутацій. Виходячи із цього закону можна передбачити, що у межах класу ссавців (і навіть за його межами) можна виявити багато мутацій, які викликають такі самі зміни фенотипу, як і у людини. Для моделювання певних спадкових аномалій людини підбирають і вивчають мутантні лінії тварин, які мають подібні порушення.

На сьогодні відомо близько трьохсот мутантних ліній кролів, пацюків і собак. Було описано і вивчено багато генетичних мутацій у тварин, які подібні до відповідних аномалій людини. Гемофілія А і В зустрічається у собак і зумовлена, як і у людини, рецесивними генами, локалізованими в Х-хромосомі. У ховрахів і пацюків виявлені патологічні мутації, які проявляються як гемофілія, цукровий діабет, ахондроплазія та деякі інші.

Мутантні лінії тварин точно не відтворюють спадкових хвороб людини. проте навіть часткове моделювання, тобто відтворення не всієї хвороби у цілому, а тільки патологічного процесу або навіть його фрагменту, дозволяє у ряді випадків виявити механізми первинного відхилення від норми. Поряд з біологічним моделюванням останнім часом використовуються методи математичного моделювання. Ці методи використовуються у популяційній генетиці (моделі популяцій).

У ряді випадків використовуються додаткові методи вивчення генетики людини: імунологічні, фізіологічні. Вивчаються особливості електроенцефалограм, швидкість утворення умовних рефлексів, реакції поведінки, використовуються психологічні тести.

Лекція 10 Генетика популяцій

Дарвінівське вчення утвердило в науці уявлення, що кожний вид – категорія історична, якісний етап еволюції. Кожний вид виник з іншого і існує, доки не зміняться умови. При нових умовах вид або загине, або змінюючись, дасть початок якісно новому чи новим видам.

Вид – сукупність особин, які схожі між собою за морфологічними і фізико-біохімічними ознаками, каріотипом, мають спільне походження, схрещуються між собою і дають плідне потомство та заселяють певну територію (ареал).

Біологічний вид, який складається з чисельних особин, що мають генетичні родинні зв’язки, але різняться за комбінаціями спадкових ознак, складає цілісну біологічну макросистему. Генофонд – сукупність усіх генів (генотипів) популяції, виду у певний період часу.

Особини будь-якого виду поширені у своєму ареалі не рівномірно, а окремими стійкими скупченнями – популяціями. Популяція– сукупність особин одного виду, що заселяють певну територію, схрещуються між собою і в певному ступені за певних причин ізольовані від інших аналогічних сукупностей.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.