Вариант рыхлой соединительной ткани. Клеточные элементы пульпы отличаются разнообразием. Помимо одонтоболастов здесь имеются фиброблатсы, макрофаги, плазматические клетки. Одонтобласты принимают участие в обменных процессах дентина и эмали. Они располагаются преимущественно в наружном слое пульпы, а их отростки
проникают в дентинные канальцы и идут на всем их протяжении.
Содержание воды в пульпе составляет примерно 72-74% остальное приходится на долю сухого остатка, состоящего из органических и неорганических компонентов.
Основными белками внеклеточного матрикса пульпы являются коллагеновые белки, формирующиеся в коллагеновые волокна.Эластические волокна впульпе не найдены. Пульпа корневых каналов отличается от коронковой пульпы большим содержанием пучков коллагеновых волокон. В состав межклеточного матрикса входят протеогликаны, гликопротеиды, фосфопротеиды и нгокомолекулярные пептиды. Особенно богата гликопротеидами базальная мембрана сосудов пульпы зуба. Из углеводных компонентов преобладают здесь хондроитинсульфаты.
Пульпа как любая ткань содержит липидыи различные метаболиты. Макромолекулы ткани пульпы зуба (белки и входящие в состав протеогликанов хондроитинсульфаты) обладают амфотерными свойствами. При физиологических значениях рН карбоксильные группы коллагена, гликопротеидов, протеогликанов создают отрицательный заряд межклеточного матрикса, это обуславливает не только поглощение чужеродных веществ, но и катионов Са, К, Na
Содержание белка в пульпе зуба составляет 52 ±3 мг/г. Гликогена 0,42 мг/г Особенность метаболизма пульпы.
1. Пульпа зуба является относительно высокой по сравнению с другими тканями интенсивностью окислительно-восстан овите льных процессов, а от сюда высокое потребление кислорода, т.е. интенсивное дыхание.
2. О высоком уровне обменных процессов свидетельствует наличие здесь пентозофосфатного цикла окисления глюкозы (интенсивно идут биосинтетическеие процессы). Наиболее высокий уровень этого цикла определяется в период активной продукции одонтобластами дентина, например при образовании вторичного цемента.
С помощью радиоизотопных методик 5 пульпе обнаружены активные процессы синтеза РНК, а значит и синтез соответствующих белков. Раскрыты закономерности функционирования одонтобластов в норме и при патологии.
Пульпа зуба богата ферментами с достаточно высокой активностью, что так же свидетельствует об интенсивном метаболизме данной ткани. Доказано, что углеводный обмен протекает здесь со значительной интенсивностью. В пульпе обнаружены практически все ферменты углеводного обмена (альдолаза, ЛДГ, гексокиназа, амилаза, фосфорилаза.) Обнаружены здесь дыхательные ферменты, ферменты цикла Кребса, различные формы эстераз, щелочная и кислая фосфотаза, здесь найдена глюкозо-6-фосфотаза (гликоген который здесь расщепляется может в виде глюкозы поступать в дентинную жидкость). Обнаружена АТФ-аза, аминопептидаза, трансферазы АлАт и АсАт, холиностераза и др. ферменты.
Обнаруженный комплекс ферментов позволяет характеризовать пульпу как ткань с высокой метаболической
активностью, что и обуславливает высокий уровень трофики, реактивности и защитные механизмы данной ткани зуба. Об этом свидетельствует например повышение активности многих ферментов пульпы при кариесе, пульпитах и др. патологических состояниях. При среднем и глубоком кариесе в ir/льпе повышаетсясодержание глико гена.
Теории минерализации.
В кости содержится большое количество цитрата. В скелете сосредоточено примерно 90% все лимонной кислоты организма. Накапливается за счет цитратсинтазы одонтобластов. Важное свойство цитрата - вывсокая комплекеообразующая активность с ионами Са. Цитрат активирует кислые лизосомальные гидролазы Участвуют в процессах отложения солей Са и Р).
Минерализации кости предшествует синтез белков, гпикозаминогликанов, различных ферментов, макроэргов и др. Кости в отличии от твердых тканей зуба обладают способностью к минерализации. Полагали что кальцификация - простой процесс осаждения минеральных солей подчиняющихся законам классической физической химии, при этом считали, что основным условием являются соответствущие концентрации
ионов Са и Р. Но кальцификация является сложным процессом в который вовлекается целый ряд соединений в том числе белки и ферменты. В дальнейшем появились ферментативные теории осеофикиции. 1923 г.. Ведущую роль в процессе осеофикации принадлежит щелочной фосфотазе, т.е. под действием щелочной фосфотазы происходит разрушение органических фосфосодержащих субстратов(глицерофо сфат) и в результате создается высокая концентрация ионов явление перенасыщения и последующее образование костной соли. Слабость теории: костная ткань содержит мало органических фосфатов, многие ткани содержат щелочную фосфатазу, но однако не все минерализуются.
Угнетение ферментов гликолиза и щикогенолиза сопровождается угнетением кальцнфнкации. была доказана необходимость АТФ для минерализации, поэтому появились другие теории сотяасно которым кристаллизацию инициируют компоненты органического матрикса обызвествляемых тканях. 1 Изучение функции коллагена в процессах минерализации позволило показать, что коллаген может инициировать нуклеацию апатитовых кристаллов на макромолекулах коллагеновых фибрилл, т.е. способен вызывать образование центров кристаллизации апатитов из
растворов фосфатов Са.
2 Свободный или связанный с белками хондроитинсульфат. Они интенсивно секретируются наряду с гликозаминогликанами , а затем подвергаются расщеплению лизосомальными гидролазами в образованием высокоактивных анионов. Предполагают, что биохимич., основу образования зародышевых кристаллов гидроксиапатита составляет реакция образования комплекса между коллагеном, АТФ, Са и хондроитинсульфатов Начало процесса минерализации объясняют в настоящее время усилением в остеобластах процессов распада гликогена и поступлением ацетилКоА в цикл Кребса, что приводит к выделению в окружающую среду цитрата и малата. Они способствуют растворению аморфоного фосфата Са. Во-вторых они создают оптимальную среду для деятельности кислых гидролаз выделяемых из лизосом остеобластов. Лизосомальные ферменты перестраивают органический матрикс кости.