Математические модели, построенные на основе структурного подхода, обладают существенным недостатком, заключающемся в представлении структуры деятельности оператора в неизменяющемся, постоянном виде. (Сказанное не относится только к моделям, в основе которых лежат функциональные сети). Для преодоления этого недостатка Г.В. Суходольским предложены понятия вероятностного алгоритма и случайной структуры, которые реализуются им при построении структурно-алгоритмических моделей деятельности [111,178]. Эта модель использует математический аппарат теории графов и матричной алгебры и представляется в виде абстрактного графа деятельности (равновесного стохастического мультиграфа).
Абстрактный граф деятельности (АГД) представляет собой некоторую конечную совокупность вершин отображающих элементы деятельности (людей, предметы и орудия труда, реализуемые операции), и сопоставленную этим вершинам совокупность дуг, характеризующих связи между элементами деятельности (материальные, информационные, энергетические). АГД можно рассматривать как наиболее общую модель деятельности, поскольку в принципе его дугам и вершинам могут быть приписаны любые качественные и количественные характеристики. При этом дуги АГД могут быть определены любым математическим и физическим образом. Благодаря этому, а также специально разработанному новому математическому аппарату построения вероятностных алгоритмов и синтеза равновесных мультиграфов оказывается возможным математически описывать практически любую сложную деятельность, а далее на полученном описании использовать другие известные модели деятельности.
Так, рассмотренные выше сервомодели (модели слежения), основанные на использовании передаточных функций, могут быть представлены как ориентированные или неориентированные графы, вершины которых есть условно выделяемые звенья (усилительные, инерционные, дифференцирующие, интегрирующие и т. п.) с известными передаточными свойствами, а дуги (ребра) имеют смысл входных и выходных переменных. Информационные модели представляют собой подграфы от стохастического орграфа, вершины которого есть вероятностно характеризуемые признаки, определенные на множестве средств индикации, а также состояния системы, определяемые этими признаками, а дуги — импликации. Точно также можно показать, что и другие модели деятельности в конечном итоге могут быть сведены к АГД.
Такому графу и его модификациям однозначно соответствует ряд матриц: матрица смежности; матрица, описывающая вероятностный алгоритм решения каждой задачи в любом из режимов работы; матрица для каждого режима работы; матрица для описания работы оператора во всех режимах. Исходной является матрица смежности, остальные получаются на ее основе с помощью специально введенной операции обобщения. Полученные в матричной форме выражения позволяют получить математические модели на разных структурно-алгоритмических уровнях: реализации алгоритма, алгоритма задачи, индивидуальной задачи, коллективной задачи. Каждая из этих моделей может быть построена в двух специфических формах: операционно-логической и предметно-функциональной.
В первом случае модель представляется в виде графа, вершинами которого являются коды сенсорных, моторных и логических операций, а дугами — импликации, характеризуемые частотой. Во втором случае модель также представляется в виде графа. Однако вершины в нем определены предметно, в виде средств контроля и управления, а дуги, характеризуемые частотой, определены функционально как пространственные перемещения специалиста, а также в виде поступающей к нему и исходящей от него информации. Большое внимание при построении моделей уделяется вопросу получения оценок для взвешивания частотных алгоритмов и способам синтеза более крупных структур из подструктур, оптимальных на уровне частных алгоритмов.
В разработанных моделях используются: перечисление реализаций частных алгоритмов при наиболее вероятных сочетаниях логических условий; специальное матричное представление этих реализаций и их объединение в виде
(8.4)
где D — надматрица, отображающая модель деятельности для 1 задач, m режимов работы и п способов решения каждой задачи; АГц — подматрица j-й реализации i-ro частотного алгоритма в r-ом режиме (j=l,n; i= 1Д;г= l,m); 1щ, Ir;, Ir — частота j-ro способа i-й задачи и r-го режима работы соответственно.
Путем введения специальной оценки эффективности труда оператора данная модель позволяет осуществить оптимальную компоновку рабочего места оператора.
Помимо использования для построения структурно-алгоритмических моделей деятельности оператора теория графов используется в инженерной психологии и для решения целого ряда других задач: для оптимального размещения людей и машин в рабочих помещениях и оборудования на рабочем месте [111,178];
для описания и анализа потоков информации в системах контроля и управления [135, 178]; для описания и машинного моделирования процессов памяти, оперативного мышления и принятия решений [151, 100]; для описания и анализа организационной структуры трудового коллектива — формальной и неформальной [25, 175]. Методы теории графов лежат также в основе одного из подходов к построению семантической теории информации [70].
Для построения моделей оператора может использоваться и математический аппарат теории игр; такие модели называются игровыми. Теорией игр называется раздел математики, изучающий абстрактные модели конфликтных ситуаций. Под конфликтной понимается ситуация (игра), в которой участвуют как минимум два игрока (лица, коллективы, управляющие системы), стремящиеся по некоторым определенным в игре правилам обеспечить себе максимальный выигрыш. Интересы игроков полностью или частично противоположны, то есть всякое улучшение положения одного игрока ухудшает положение другого. Простейшей схемой теории игр является конечная игра двух лиц с нулевой суммой. При этом каждый игрок независимо от другого выбирает одну из конечного числа возможностей. Каждой паре выбранных возможностей соответствует некоторый выигрыш одного игрока, равный проигрышу другого, то есть сумма выигрышей обоих игроков равна нулю. Цель теории игр заключается в выработке рекомендаций для определения оптимальной стратегии каждого из участников игры. Все рекомендации выбираются в предположении, что противник является разумным и делает все для того, чтобы помешать игроку добиться своей цели. Поэтому возможности применения теории игр для создания моделей деятельности оператора весьма ограничены, поскольку он, как правило имеет дело с неразумным «противником». В этом плане весьма спорным является утверждение о том, что одним из наиболее перспективных направлений развития моделирования для проектирования деятельности человека является использование математического аппарата теории игр [55]. К сожалению, реальное положение дел не соответствует этому утверждению.
Одна из самых первых и наиболее удачных игровых моделей в инженерной психологии была предложена В.Ф. Вендой для описания процесса технической диагностики (поиска отказов) человеком-оператором [17]. Модель базируется на следующих исходных условиях. Оператор получает сигнал об отклонении режима от нормы. Существует п параметров, проверка значений которых позволяет установить причину отклонения и компенсировать его одним из имеющихся способов. Чем быстрее оператор найдет причину, тем быстрее он ликвидирует отклонение; при каждой неудачной попытке — вызове «пустого» параметра или неудачном опережающем действии — оператор «платит» потерей времени и, возможно, дальнейшим ухудшением состояния объекта. Выигрыш и потеря могут быть в каждом случае оценены количественно.
Для нахождения оптимальной стратегии оператора необходимо найти оптимальную перестановочную матрицу; ее размер 2пхп2. Число последовательных шагов для получения достаточно хорошего приближения равно nm, где m — небольшое положительное число, такое что nm<n!. Процедура технической диагностики сводится к одномерному варианту игры и состоит в следующем: 1 — оператор (игрок 1) пытается определить какой из п параметров определяет наличие неисправности; 2 — параметр (игрок 2) скрыт в одном из п сигнальных элементов устройства отображения.
Игра продолжается до нахождения параметра (игрока 2), обозначенного как выигрыш оператора (игрока 1). Эту процедуру можно представить как поиск набора положительных чисел dj (чем длиннее перебор параметров, тем меньше выигрыш оператора, если же оператор не успевает предотвратить аварию и она происходит, это рассматривается как выигрыш игрока 2). Если параметр скрыт в i-м сигнальном элементе с вероятностью х,, то оператор стремиться выбрать такое i, при котором а;х; = тах (а;Х;), где а; — есть какая-либо оценка эффективности i-ro действия оператора.
Математический аппарат теории игр предлагается также использовать в качестве основного средства для описания и разрешения различного рода конфликтов в системе «человек-машина» [131]. Здесь приведена
классификация возможных конфликтов, дается их подробное математическое описание, показаны в общем виде пути их разрешения. Одним из основных путей предлагается использовать возможность преобразования неорганизованного конфликта в организованный. Рассмотрение этого вопроса ведется с позиций развиваемого автором данной работы организмического подхода к проектированию и построению СЧМ. К сожалению, предлагаемые игровые модели носят очень общий и абстрактный характер, а пути их практической реализации и примеры практического применения никоим образом не приводятся.
Наиболее широкое применение в настоящее время для описания деятельности оператора находят методы теории информации, теории массового обслуживания, теории автоматического управления. Получаемые на основе использования этих методов модели деятельности называются соответственно информационными, сервисными (или моделями обслуживания), моделями слежения. Рассмотрим их более подробно.
Применение теории информации для моделирования деятельности оператора основано на представлении его в качестве канала связи, задачей которого является передача информации со средств отображения на органы управления. Построение модели основано на расчете количества информации по формулам (2.2) и (2.3). Они представляют собой наиболее общие формулы для расчета количества информации.
Однако оператор в своей деятельности выполняет различные действия (поиск сигнала, считывание показаний с прибора, производство вычислений, управляющие движения т.п.). Для каждого из этих действий в зависимости от конкретных условий их выполнения могут быть получены частные формулы для определения количества информации.
Для получения частных формул необходимо воспользоваться двумя основными правилами.
1. Количество информации характеризует сложность выбора одного состояния из п возможных. Поэтому в любом частном случае нахождения количества информации прежде всего необходимо определить общее число возможных состояний данной
системы и их вероятности, а затем применить формулу (2.2) при неравновероятных или (2.3) при равновероятных состояниях системы. 2. К величине информации применимо правило аддитивности. Это означает, что общее количество информации, поступающей от нескольких источников, равно суммарному количеству информации от каждого источника в отдельности. Правило справедливо, если все источники взаимонезависимы. Применительно к деятельности оператора это означает, что для определения общего количества информации, перерабатываемой человеком, необходимо вначале определить количество информации, используемой при выполнении каждого действия, а затем найденные значения просуммировать.
Порядок применения этих правил рассмотрим на частном примере. На рис. 8.5 показана лицевая сторона измерительного прибора, имеющего три диапазона измерений: 50 В, 100 В и 500 В. Определим количество информации, которую перерабатывает оператор, проводя измерение на каждом из диапазонов.
На первом диапазоне оператор снимает отсчет с прибора и найденное значение делит на два. Если погрешность снятия показаний равна ±δ, то общее число различимых оператором состояний прибора равно
Рис. 8.5. Лицевая панель измерительного прибора.
где xmax и xmin — соответственно максимальное и минимальное значение шкалы прибора.
Считая, что величина 5 равна половине цены деления шкалы и что все показания равновероятны, из формулы (2.3) следует
Найденное показание оператор должен разделить на два. Количество информации, используемой при вычислении, находится по формуле
где N1 — максимально возможные значения используемых при вычислении чисел; m — количество чисел, используемых при вычислении; R — максимально возможное значение результата вычисления.
Нетрудно заметить, что формула (8.6) получена на основании приведенных выше правил. Ее применение основано на том, что при производстве вычислений человек m раз производит выбор нужного числа из N; возможных, а при получении результата — выбор одного числа из R возможных.
Подставляя исходные данные в формулу (8.6), получим:
Общее количество перерабатываемой информации равно
Рассмотренная стратегия поведения характерна для оператора малообученного или оператора, который сравнительно редко производит измерения на данном диапазоне. Если же оператор часто работает с прибором, то у него могут быть сформированы и храниться в памяти эталоны истинных значений для каждого значения шкалы прибора. Тогда действие по переводу отсчета со шкалы в истинное значение практически будет отсутствовать, выполняться автоматически на уровне навыка, внимание оператора на его выполнение специально не будет направлено. При каждом отсчете оператор будет извлекать из памяти хранящиеся там эталоны истинных значений измеряемого показателя и использовать их для получения конечного результата без производства специальных вычислений. Очевидно, количество перерабатываемой человеком информации будет определяться только той величиной, которую оператор получает производя отсчет по шкале прибора, т. е. в этом случае Hi=5,64 дв. ед.
Как видим, информационные методы не всегда дают однозначный ответ о результатах деятельности оператора. Даже решая одну и ту же задачу, человек может применять различные стратегии поведения. Это существенно влияет на количество информации, перерабатываемой при решении задачи.
При работе на втором диапазоне оператор сразу получает истинное значение измеряемого показателя, т. е. Н2=5,64 дв. ед. При работе на третьем диапазоне оператор помимо снятия отсчета должен умножить полученное значение на пять. Расчет количества информации производится аналогично тому, как это делалось для первого диапазона.
Методы теории информации применяются в инженерной психологии при решении ряда задач. Во-первых, количество перерабатываемой информации может использоваться как мера сложности работы оператора, следовательно, такой способ позволяет сравнивать между собой различные виды операторской деятельности. Во-вторых, зная количество информации, можно оценить время, которое затрачивает оператор на переработку этой информации, поскольку между ними, как правило, существует линейная зависимость. В-третьих, знание количества информации позволяет согласовать скорость ее выдачи (производительность источника информации) с психофизиологическими возможностями человека по ее приему и обработке. Условием неискаженной передачи информации является: Vnoc < Von, где Vnoc — скорость поступления информации к оператору; Von — пропускная способность оператора.
Величина Von зависит от характера деятельности оператора. Если он может быть представлен как канал без памяти, то величина пропускной способности лежит в пределах 10 — 70 дв.ед/с. В этом случае человек работает как простой канал передачи информации, последовательные сигналы независимы друг от друга,
предыдущий сигнал не влияет на прием следующего (печатание на машинке, корректорская работа, выполнение арифметических операций и т. п.).
Если в процессе деятельности оператору необходимо запомнить отрезок входной последовательности сигналов, не превышающий объем кратковременной памяти, то в этом случае человека можно рассматривать как канал переработки информации с кратковременной памятью. Пропускная способность имеет в этом случае порядок нескольких дв. ед. в секунду (примерно 2 — 4 дв. ед/с). Такой режим является наиболее характерным для деятельности оператора.
Если же отрезок входной информации превышает объем кратковременной памяти, то для его запоминания необходимо многократное повторение. Пропускная способность вследствие этого падает до десятых долей дв. ед. в секунду и ниже [111].
Применение теории информации для анализа деятельности оператора связано с целым рядом трудностей. Это обусловлено тем, что теория информации была создана для решения ряда задач в технике связи. Поэтому простой перенос ее методов в другую область — исследование человеческой деятельности — не всегда дает желаемые результаты.
Основные причины трудностей применения теории информации для изучения деятельности оператора заключаются в следующем:
1.В основе расчета количества информации по формулам (2.2) и (2.3) лежит длина физического алфавита сигналов и вероятностей их появления. Человек же зачастую пользуется собственным (внутренним) алфавитом сигналов, отличным от физического, а субъективные вероятности сигналов для человека не всегда совпадают с объективными. Однако принципы формирования субъективного алфавита еще до конца не раскрыты. Поэтому приходится пользоваться некоторой идеализированной моделью деятельности человека, в основу которой положены характеристики входных, а не «внутренних» сигналов человека.
2.Теория информации занимается лишь стационарными процессами, статистические характеристики которых с течением времени не меняются. Характеристики же человека ввиду его обучаемости, утомляемости, действия различных факторов беспрерывно меняются во времени.
3.Теория информации не учитывает смысловую сторону информации, ее ценность и значимость. На деятельность же оператора оказывают влияние не только статистические характеристики сигналов, но и их смысл и значение для оператора.
4.Теория информации не учитывает временную неопределенность сигналов. Для человека же имеет большое значение не только то, какие сигналы и с какой вероятностью к нему поступают, но и время их поступления [155]. Это является источником дополнительной неопределенности, которая при анализе деятельности, как правило, не учитывается.
Наличие этих трудностей накладывает существенные ограничения на применение теории информации в инженерной психологии. Игнорирование их приводит к значительному разбросу экспериментальных данных и затрудняет сопоставление результатов, полученных в разных исследованиях. Однако это не должно являться причиной отказа вообще от применения информационных методов в инженерной психологии. Как и любой другой, информационный метод справедлив лишь при определенных условиях и для решения определенных задач. Эти условия в общем виде сводятся к следующему:
■ четко определен алфавит используемых человеком сигналов и вероятности их появления;
■ сигналы по своему смысловому значению примерно равноценны для оператора;
■ характеристики работоспособности оператора в пределах изучаемого отрезка времени не претерпевают существенных изменений;
■ стратегия поведения оператора известна и не меняется в процессе решения однотипных задач;
■ число поступающих к оператору различных сигналов невелико, сами сигналы слабо зависят друг от друга;
■ временная неопределенность сигналов существенно меньше смысловой неопределенности или же она может быть учтена при расчетах количества информации.
В тех случаях, когда эти условия соблюдены, применение теории информации для изучения и описания деятельности оператора дает весьма полезные результаты [122, 168, 207]. Наряду с этим делаются интенсивные попытки совершенствования информационных методов применительно к анализу и описанию деятельности оператора. Эти попытки идут как по пути совершенствования существующих методов, использующих энтропийные оценки количества информации, так и по пути учета семантической стороны информации.
Например, в работе [155] существенно расширяется понятие энтропии по сравнению с рассмотренными выше случаями. При этом считается, что любой сигнал индикатора как источника информации может полезно служить задачам контроля и управления лишь в том случае, если он будет соотнесен ко времени его появления и экспозиции. Таким образом, для деятельности оператора важна не только статистическая (частота появления), но и временная (время появления) неопределенность. В силу этого возникает необходимость явного введения времени в исходные соотношения для оценки энтропии и количества информации. С математической точки зрения этот шаг эквивалентен переходу от уровня случайных событий на уровень случайных процессов в моделировании взаимодействия человека и машины.
При таком подходе в качестве основы для формирования выражений энтропии и количества информации необходимо рассматривать вероятности наступления тех или иных событий х; в интересующий нас момент tj на отрезке времени наблюдения 0 < t < Т, т. е. вероятности Р (х;, t). Тогда для полной количественной характеристики неопределенности ситуации с учетом неопределенности, вносимой фактором времени, будем иметь
(8.7)
Среднее количество информации в сообщении, вырабатываемом на отрезке наблюдения, составит
(8.8)
Нахождение вероятностей Р (х;, t) является специфической задачей и определяется типом и характером протекания процесса управления, а также теми требованиями, которые предъявляются к деятельности оператора.
Энтропия сообщения и определяемое ею количество информации определяется по формулам (2.2) и (2.3). Как уже отмечалось, эти формулы оценивают энтропию взаимно независимых сообщений. Иными словами, предполагается, что появление того или иного сообщения не изменяет вероятность появления следующего сообщения. Однако при работе оператора в СЧМ такой случай не всегда возможен. Как правило, поступающая последовательность сигналов обладает логической избыточностью. Это означает, что появление определенного сигнала изменяет вероятность появления следующего сигнала. Наличие логической избыточности равносильно уменьшению энтропии, поскольку появление определенного сигнала X j уменьшает неопределенность очередного состояния информационной модели.
При подсчете количества поступающей в этом случае информации необходимо пользоваться формулами условий энтропии. Так, например, энтропия второго и третьего порядка равна
(8.9)
(8.10)
где — вероятности появления всех возможных
диграмм и триграмм сигналов (совместного появления двух и трех сигналов); Hj — энтропия первого порядка, определяемая по формуле — максимально возможное число диграмм и триграмм сигналов, равное числу размещений по два и по три из общего числа n сигналов.
Формула (8.9) выражает среднюю энтропию сигнала при условии, что уже известен предыдущий, формула (8.10) — энтропию сигнала, если известны два предыдущих. Подобным образом можно вычислить и энтропию более высоких порядков [119].
Рис. 8.6. Структурная схема системы массового обслуживания с человеком-оператором.
Для построения моделей деятельности оператора может использоваться также математический аппарат теории массового обслуживания. Структурная схема системы массового обслуживания. (СМО) с человеком-оператором показана на рис. 8.6. Информация со средств отображения и от взаимодействующих операторов, а также сигналы внешней среды образуют входящий поток заявок (требований на обслуживание). Обычно предполагается, что входящий поток подчинен закону Пуассона. Такой поток иначе называется простейшим. Для его описания требуется знать величину X — плотность входящего потока, которая равняется числу заявок, поступивших в единицу времени. Заявки поступают или прямо к оператору, или становятся в очередь на обслуживание (если оператор занят обслуживанием предыдущей заявки). Устройством для хранения очереди могут быть средства отображения информации или память оператора. В зависимости от организации очереди могут быть различные типы СМО: с ожиданием, или без потерь (любая заявка хранится до тех пор, пока не будет обслужена оператором); с ограниченным ожиданием (заявка хранится в очереди ограниченное время); с ограниченной длиной очереди (в очередь может становиться лишь ограниченное число заявок); с потерями (заявки, поступившие в момент занятости оператора, в очередь не становятся и к обслуживанию не принимаются).
Организация очереди определяется характером деятельности оператора. Поэтому при проектировании деятельности следует стремиться, чтобы она, насколько это возможно, была организована по схеме массово-
го обслуживания с ожиданием. При прочих равных условиях это позволяет обеспечить максимальную эффективность функционирования СЧМ.
Заявки, поступившие к оператору, обрабатываются им по заданному алгоритму. Качественная сторона обслуживания (правильно или неправильно обработана информация, с какими затратами сил и средств, какой психофизиологической «ценой» и т. п.) в теории массового обслуживания не учитывается: здесь значение имеет факт поступления или непоступления заявки на обслуживание.
Таким образом, в данной модели оператор представляется в качестве обслуживающего аппарата СМО. Основной его характеристикой является время обслуживания, в теории массового обслуживания оно обычно принимается подчиненным экспоненциальному закону распределения. Для построения закона распределения необходимо знать интенсивность обслуживания μ, которая является величиной, обратной среднему значению времени обслуживания.
Характер обслуживания заявок может быть одноканальным или многоканальным, однофазным или многофазным. При многоканальном обслуживании входящий поток распределяется между несколькими операторами. При многофазном обслуживании поступившая заявка обслуживается аппаратом первой фазы (первым оператором), затем передается на дальнейшее обслуживание во вторую фазу (следующему оператору) и т. д.
Применение аппарата теории массового обслуживания позволяет учесть ряд специфических особенностей, характерных для деятельности оператора и обусловленных представлением его в качестве обслуживающего аппарата. Так, например, ограниченность объема оперативной памяти заставляет рассматривать СМО с ограниченной длиной очереди, а ограниченность длительности сохранения информации в памяти — СМО с ограниченным временем ожидания. Групповая деятельность операторов может быть учтена при рассмотрении многоканальных или многофазных СМО в зависимости от вида взаимодействия операторов.
Возможность совершения ошибок оператором и их исправления приводит к необходимости рассмотрения СМО с ненадежным обслуживающим аппаратом. При этом ошибки оператора рассматриваются как поток отказов обслуживающего аппарата, а время их исправления — как время восстановления.
Применение теории массового обслуживания позволяет решить многие вопросы организации деятельности человека-оператора. К их числу относится определение необходимого числа операторов, определение требований к уровню подготовленности оператора (обученности, скорости реакций, объему памяти и т.д.), определение допустимой плотности потока сигналов, поступающих к оператору, решение некоторых задач организации взаимодействия операторов. Представляется возможность вычисления вероятностей различных состояний системы «человек-машина». Следовательно, так же как и теория информации, теория массового обслуживания дает количественные методы описания деятельности человека-оператора.
К сожалению, применение методов теории массового обслуживания для построения моделей деятельности оператора также связано с целым рядом трудностей. Основная из них определяется введением целого ряда ограничений относительно вида входящего потока заявок и закона распределения времени обслуживания. Входящий поток на практике часто отличается от простейшего, а закон распределения времени обслуживания — от экспоненциального. Другая трудность связана с тем, что в теории массового обслуживания не учитывается качественная, содержательная сторона обслуживания. Для оценки качества обслуживания необходимо дополнительно применять другие методы.
Эти трудности ограничивают область применения аналитических методов теории массового обслуживания. Однако так же, как для теории информации, это не должно являться причиной для полного отказа от применения этих методов в инженерной психологии. Условия их применения здесь сводятся к следующему:
■ поступающая к оператору информация должна допускать интерпретацию ее в терминах входящего потока заявок;
■ входящий поток и время обслуживания должны подчиняться определенным законам распределения;
■ входящий поток должен быть однородным, в противном случае должно быть возможным разделение его на однородные группы (по срочности, важности, затратам на обслуживание и т. п.);
■ для отражения динамического характера процесса обслуживания должна быть установлена система критериальных временных функций, позволяющая оценить эффективность СМО на нестационарных режимах работы.
При соблюдении этих условий возможно применение методов теории массового обслуживания для анализа деятельности оператора в СЧМ [70, 113, 155, 162, 168].
Для построения математических моделей деятельности-оператора в системах непрерывного типа (транспортные средства: самолет, автомобиль, корабль; системы, в которых оператор выполняет функции слежения или наведения; системы регулирования параметров, работающие с участием человека, и т. п.) могут применяться методы теории автоматического управления (ТАУ). С позиций ТАУ человек-оператор рассматривается как элемент следящей системы, какой представляется в данном случае система «человек-машина». На работу системы влияют динамические связи элементов системы друг с другом и человеком.
Процесс анализа системы состоит из трех этапов:
■ установление критерия поведения замкнутой системы и определение ее передаточной функции;
■ нахождение такой передаточной функции оператора, которая позволила бы получить требуемую функцию всей системы;
■ проведение системы мероприятий (отбор, тренировка операторов, соответствующее оформление технической части СЧМ), обеспечивающих требуемую функцию оператора.
При решении этих задач необходимо учитывать следующие психофизиологические особенности человека: ограниченность полосы пропускания, одноканальность, недостаточную точность работы, нестабильность коэффициента усиления, внесение помех и т. п. Как правило, учесть все эти особенности бывает трудно, поэтому на практике используют лишь упрощенные модели деятельности оператора. Одной из них является линейная модель, структурная схема ее показана на рис. 8.7.
Рис. 8.7. Структурная схема линейной модели.
На этой схеме оператор представляется в виде трех последовательно соединенных звеньев. Первое звено осуществляет прием сигналов; по своим динамическим свойствам оно является усилительным звеном с запаздыванием. Второе звено — решающее (вычислительное). При достаточной тренировке, отсутствии возмущающих воздействий и минимальной психофизиологической напряженности оператора это звено представляет собой обычный усилитель. Третье звено оператора — исполнительное. По своим свойствам оно является инерционным звеном.
Общая передаточная функция такой модели оператора может быть записана как произведение передаточных функций отдельных звеньев
(8.11)
где k = k1k2K3 — коэффициент усиления оператора;
— время реакции оператора, равное в среднем 0,2 с;
— постоянная времени, характеризующая инерцию (примерно 0,125 с) в образовании исполнительного действия.
Наиболее важным недостатком существующих моделей, основанных на использовании аппарата ТАУ, является их линейность. Между тем хорошо известно, что человек-оператор является сугубо нелинейным звеном следящей системы. Для удовлетворительного описания деятельности оператора с учетом этого замечания необходимо применение градиентных методов.
ИМИТАЦИОННЫЕ МЕТОДЫ
9.1. Физическая (психологическая) имитация деятельности оператора
Широкое место в арсенале методов инженерной психологии занимают имитационные методы. Выделение их в отдельную группу является несколько условным, поскольку их в ряде случаев трудно отделить от психологических или математических методов. В то же время, как указывалось в главе V, этим методам присущи специфические особенности, что и позволяет, хотя бы и условно, выделить имитационные методы в особую группу.
В самом общем плане имитация (от лат. imitatio — подражание, подделка) может быть определена как воспроизведение характеристик некоторой системы, ситуации, события или явления в обстановке, отличной от той, в которой протекает реальная деятельность оператора [105]. Средства, с помощью которых может быть достигнуто это воспроизведение, могут быть физическими или символическими (в частности, цифровыми). Физическая имитация может быть такой точной, что ее бывает трудно отличить от оригинала, который она имитирует. Примером этого могут быть различного рода военные учения. Символическая имитация может быть достаточно полной копией протекающих в оригинале процессов, но наглядного сходства с ним в этом случае обычно не бывает. Примером этого является моделирование реальных процессов методом статистических испытаний (метод Монте-Карло).
Имитация деятельности оператора (группы операторов) может быть частичной или полной. Физическая имитация, как правило, имеет частичный характер, поскольку, хотя физические характеристики процесса или системы можно воспроизвести достаточно полно, оперативные условия деятельности не поддаются такому полному воспроизведению. При полной имитации характеристики системы, окружающей среды вместе с их входными сигналами и ответными реакциями представлены символически, посредством математических выражений. Все операции этой математической системы выполняются вычислительной машиной с помощью метода статистических испытаний [105]. При этом различают аналитическое имитационное моделирование и статистическое имитационное моделирование [137]. Их особенности и основные отличия будут рассмотрены ниже.
Помимо рассмотренного, А.И. Нафтульев предлагает различать динамическую и цифровую имитацию. Первая протекает в реальном, вторая — в ускоренном масштабе времени. Основное отличие динамической имитации от цифровой заключается в основном в том, что в первом случае человек как бы непосредственно выполняет (имитирует) свои функции, а во втором — основные его функции имитируются с помощью ЭВМ. Подытоживая все сказанное следует отметить, что физическая имитация обычно носит частичный характер и осуществляется в реальном масштабе времени; символическая имитация, напротив, может носить более полный характер и протекает в ускоренном масштабе времени.
Важнейшей формой физической имитации является деловая игра. Она представляет метод имитации управленческих и деловых ситуаций путем игры по заданным правилам человека (группы людей) и ЭВМ. Деловая игра является формой воссоздания предметного и социального содержания профессиональной деятельности, моделирования систем отношений, характерных для данного вида практики. Проведение деловой игры представляет собой развертывание особой (игровой) деятельности участников на имитационной модели, воссоздающей условия и динамику производства. В зависимости от того, какой тип человеческой практики воссоздается в игре и каковы цели участииков, различают деловые игры учебные, исследовательские, управленческие, аттестационные. Деловые игры получили широкое распространение в связи с задачами по совершенствованию управления, принятия плановых и производственных решений, подготовки и повышения квалификации кадров. Учебная деловая игра позволяет задать в обучении предметный и социальный контексты будущей профессиональной деятельности и тем самым смоделировать более адекватные по сравнению с традиционным обучением условия формирования личности специалиста. В этих условиях усвоение нового знания накладывается на канву будущей профессиональной деятельности; обучение приобретает совместный, коллективный характер; формирование специалиста осуществляется в результате подчинения двум типам норм: нормам компетентных предметных действий и нормам отношений в групповой деятельности. Мотивация, интерес и эмоциональный статус участников деловой игры обусловливаются широкими возможностями для целеполагания и целеосуществления, диалогического общения на материале проблемно представленного содержания деловой игры. В инженерной психологии деловые игры широко применяются для подготовки операторов энергосистем, в психологии управления — для подготовки различного рода управленческих кадров.
Рассмотрим более подробно на конкретных примерах возможные случаи применения деловых игр для решения указанных задач.
В работе [197] обоснована необходимость формирования оперативных навыков и умений — заключительного этапа подготовки операторов энергоблоков — посредством деловых (оперативных) игр. Для этого в оперативной деятельности персонала энергоблоков было выделено игровое начало, найден подлинный соревновательный элемент. Например, обучаемому поручалась роль энергоблока, и он должен был правильно реагировать на управляющие действия другого обучаемого. Или один из игроков «изобретает аварию», а другой игрок — устраняет отказы. Помимо этого разработаны сценарии для проведения оперативных игр при возникновении тех или иных ситуаций в технологическом процессе.
Это позволило создать не просто игровую обучающую систему, но прежде всего — игровую тренирующую систему. Данный аспект является принципиально важным, так как позволяет ликвидировать разрыв между знаниями и умениями, между обучением и тренировкой. Тренирующее качество именно и достигнуто посредством оперативных игр. Для решения этих задач разработано несколько разновидностей таких игр: ситуационные (наблюдение, диагностика, планирование), координационные (взаимодействие с автоматикой), противоаварийные.
Рассмотрение особенностей проведения таких игр обсудим для случая диагностики [197]. ЭВМ задает исходные условия и предлагает обучаемому указать вид игры (стандартная, усложненная, ускоренная и облегченная). Допустим, выбрана усложненная игра. От обучаемого требуется в этом случае показать понимание технологической ситуации и ее многомерности. Затем ЭВМ просит обучаемого найти причину отклонения. В случае правильной диагностики в рамках заданного лимита времени ЭВМ фиксирует победу обучаемого.
Если же правильное решение принято с опозданием, машина разрешает продолжить игру с добавкой времени. Отказ от добавки ведет к фиксации проигрыша и повтору игры для другой ситуации; согласие на дополнительное время увеличивает штрафные очки, что не ведет к чистой победе, но и не исключает ничью. К ничьей ведет также правильное решение, принятое вовремя, но с помощью ЭВМ. Проигрыш фиксируется в случае ошибки обучаемого. От проигрыша следует отличать поражение, которое засчитывается обучаемому, если он принял ошибочное решение, отягощенное просрочкой времени, невзирая на помощь. Поражение вводит в действие дополнительные игры. Они делятся на две группы: игры с признаками и игры с причинами (табл. 9.1).
Из игр с признаками особенно существенной является игра «Найти приборы». Речь идет о проверке «прочности» связей между наименованиями признака и его индикаторами. В каждой группе дополнительных игр предусмотрены взаимные переходы. Что касается игр с причинами, то здесь особенно интересна игра «Очистить». Проведенные эксперименты с операторами электростанций показали особую трудность указанной фильтрации даже для опытных операторов. Игра состоит в максимально быстром выделении ложных причин, причем количество баллов, получаемых игроком, тем больше, чем выше правдоподобие ложной причины [197].
Таблица 9.1 Дополнительные игры
Тип
Наименование
Краткое описание
Игры с признаками
Найти признаки
Задается частная ситуация; необходимо найти хотя бы один, несколько или все релевантные признаки
Найти приборы
Задаются признаки; необходимо найти прямые и косвенные их индикаторы
Найти действие
Задаются признаки; необходимо определить диагностические действия, проявляющие их, и оценить влияние этих действий на основной процесс
От признаков к причине
Задаются неупорядоченно признаки; необходимо организовать их в логические группы и маршруты вывода (заключения)
Игры с причинами
Дополнить
Задается неполный перечень причин; требуется дополнить его
Упорядочить
Задаются неупорядоченные причины; требуется построить дерево оценки ситуаций
Очистить
Часть заданных причин — ложная; требуется отделить их от истинных причин
От причины к признакам
Игра отличается от позиции «Найти признаки» тем, что требуется указать относительную важность признаков
Как уже отмечалось ранее, деловые игры находят широкое применение и при отработке управленческих решений по инженерно-психологическому (эргономическому) обеспечению новых образцов техники. Один из вариантов такой игры описан в [199]. В ней моделируется организация взаимодействия предприятия промышленности (заказчика) и разработчика по организации работ по инженерно-психологическому (эргономическому) обеспечению разработки, испытаний и внедрению новой техники.
Из рассмотренных примеров видно, что физическое имитационное моделирование, осуществляемое в форме деловых и учебных игр, направлено не только на исследование и изучение оперативной и управленческой деятельности, но и на обучение и тренировку оперативного и управленческого персонала, отработку ими соответствующих навыков и умений. В этом плане деловые игры выступают не столько как элемент исследовательской деятельности, сколько они являются одной из форм обучения и тренировок персонала.
9.2. Цифровая (статистическая) имитация деятельности оператора
Рассмотренные ранее методы в ряде случаев не могут быть использованы для изучения и анализа деятельности оператора. Укажем некоторые из этих случаев.
1. Применение математических методов в процессе проектирования СЧМ, как правило, позволяет лишь приближенно оценивать деятельность оператора, поскольку эти методы не позволяют учесть целый ряд особенностей деятельности оператора. Попытки учета этих особенностей приводят к существенному усложнению модели. При этом может получиться, что аналитическое решение задачи оказывается либо принципиально невозможным, либо связанным с большими теоретическими и вычислительными трудностями.
2. Применение экспериментальных методов в процессе испытаний и эксплуатации СЧМ также не всегда оказывается возможным. Это может быть связано с опасностью для здоровья или жизни людей, невозможностью экспериментального воспроизведения некоторых ситуаций, с большой сложностью или стоимостью эксперимента.
В этих случаях весьма полезные результаты дает применение статистического моделирования. Оно базируется на методе статистических испытаний (метод Монте-Карло). Метод основан на розыгрыше (имитации) воздействия случайных факторов на деятельность оператора и функционирование СЧМ непосредственно в ходе моделирования. Этим объясняется другое название метода — имитационное моделирование.
Смысл метода заключается в многократной реализации с помощью ЭВМ моделируемого процесса. Каждая реализация носит случайный характер. Достоверность окончательного решения достигается статистической обработкой промежуточных результатов по множеству реализации.
Из этого следует, что имитационные методы занимают промежуточное положение между экспериментальными и математическими методами. По способу получения данных о деятельности оператора метод является математическим, а по характеру их получения и использования он копирует экспериментальный метод. Поэтому имитационные методы называют также машинным или математическим экспериментом.
Применение имитационных методов позволяет избежать многих недостатков экспериментальных и математических методов. С одной стороны, имитационные методы позволяют получить сравнительно высокую достоверность результатов моделирования уже на ранних этапах проектирования СЧМ. С другой стороны, по выражению академика В.М. Глушкова, математический эксперимент работает и в тех случаях, когда эксперименты с реальными объектами сильно затруднены, а порой и вовсе невозможны [29]. Кроме того, в ряде случаев его стоимость может оказаться гораздо ниже, чем стоимость эксперимента.
В настоящее время метод имитационного моделирования широко используется в различных областях. Применение его в инженерной психологии имеет ряд особенностей [54, 98, 215].
1. В основании имитационного моделирования СЧМ лежит представление о производственной деятельности оператора как совокупности отдельных действий. Последовательность этих действий должна быть известна (однозначно или в вероятностном плане). При этом предполагается, что в пределах заданных ограничений операторы будут действовать согласно предписаниям. Эти предписания могут быть детерминированными или вероятностными.
2. Описание каждого действия предельно упрощено: задается вероятность и время его выполнения, учитываются обобщенные показатели эффективности (качество выполнения, стоимость и др.). Психические процессы, регулирующие выполнение отдельного действия, при этом, как правило, не рассматриваются. Такое упрощение имеет определенное преимущество, поскольку позволяет отчетливее проследить внешние связи и взаимную согласованность отдельных действий, выявить влияние фактора времени, способствуя обнаружению основных источников изменения эффективности СЧМ.
3. Многие характеристики деятельности оператора носят вероятностный характер. Поэтому введение в модель элемента случайности резко повышает ее эффективность, так как позволяет получить не только детерминированные оценки результатов деятельности оператора, но и их законы распределения.
4. Отличительной чертой моделей СЧМ по сравнению с другими имитационными моделями является упор на использование и учет внешних проявлений психологических факторов. Наряду с данными о работе технических устройств модель учитывает такие переменные, как появляющееся временами состояние напряженности, квалификация и моральные качества отдельных операторов, спаянность коллектива и его направленность [54]. Представляется возможным также учет таких психологических характеристик, как особенности памяти оператора, его реакция, эмоциональная устойчивость, способность к взаимодействию с другими операторами и т.п. [45, 70]. Однако, поскольку число факторов, влияющих на эффективность деятельности оператора, очень велико и все их учесть одновременно невозможно, очень важно выбрать из них лишь самые существенные и отбросить малозначительные. Выбранные факторы должны быть представлены в такой форме, которая позволяет
5. осуществить имитацию их на ЭВМ и произвести соответствующую обработку полученных данных. 5. Меняя порядок выполнения отдельных действий, число операторов, их психофизиологические характеристики, условия работы и т. п., модель позволяет получить такие суммарные показатели качества работы, как относительное число решенных задач, время их решения, среднее время простоя операторов или время их перегрузки, вероятность выполнения системой предписанных функций и др. Сопоставляя полученные результаты, можно выбрать оптимальный вариант построения СЧМ. Следовательно, модель является удобным способом для сравнительной оценки различных вариантов построения системы.
Построение имитационных моделей базируется на применении научных данных из общей и групповой психологии, технических наук, математики, планирования эксперимента, практики применения ЭВМ. Структура модели определяется составом входящих в нее блоков и связями между ними. Такими блоками обычно являются: блок имитации средств и условий деятельности, блок имитации собственно деятельности и общения, блок генерации проблем (задач), блок определения и задания начальных условий, блок регистрации и обработки результатов моделирования, блок управления моделью. Конкретная структура модели определяется видом моделируемой задачи.
Имитационные модели деятельности оператора в системе «человек-машина» молено разбить на два основных вида: модели решения оператором отдельной конкретной задачи и модели его функционирования в условиях потока таких задач (модели обслуживания).
Модель первого видарассмотрим на частном примере применения ее для определения времени решения задачи оператором. Для этого деятельность оператора представляется в виде суммы n отдельных независимых последовательно выполняемых действий. Для каждого из этих действий Должны быть известны законы распределения времени их выполнения. В соответствии с заложенной в память ЭВМ программой она формирует по заданному закону время выполнения первого действия t1, затем время t2 и т. д., пока не будет сформировано время выполнения последнего, n-го действия. Общее время решения задачи находится как сумма от tt до tn.
Процесс повторяется N раз, в результате чего получается N значений времени топ. По этим значениям строится закон распределения и вычисляются его основные характеристики τоп и στ.
При необходимости модель может учитывать и ошибки в выполнении отдельных действий. Для этого в память ЭВМ вводятся значения Р; — вероятности безошибочного выполнения i-ro действия (i = 1, 2...п). На каждом шаге ЭВМ вычисляет время ti и по жребию, в соответствии с вероятностью Р;, проверяет безошибочность выполнения i-ro действия. При наличии ошибки в зависимости от принятой программы работы это действие повторяется вновь либо повторяется все или часть предшествующих действий. Выполнение той или иной программы обусловлено характером исследуемой деятельности.
Модель будет еще более полной, если различать индивидуальные характеристики операторов, временные ограничения, налагаемые на процесс решения задачи, вводить различную срочность выполнения отдельных действий и т. д. Программа моделирования может быть представлена схемой, изображенной на рис. 9.1.
Рис. 9.1. Структурная схема имитационной модели деятельности оператора.
Блоки 1, 2, 3, 4 осуществляют ввод исходных данных, блок 5 проводит собственно моделирование заданное число N раз. По результатам N реализаций блок 6 вычисляет и выдает на печать закон распределения времени выполнения задачи, его числовые характеристики τоп и στ; вероятность своевременного выполнения задачи; части задачи, при выполнении которых оператор был недогружен или, наоборот, у него возникал дефицит времени, и другие величины.
В моделях второго вида(моделях обслуживания) характеристики решения оператором отдельных задач считаются известными. Здесь они выступают не как результат моделирования (как в первом случае), а в качестве исходных данных. Кроме этого, исходными данными являются:
■ поток задач, решаемых оператором (моменты поступления задач, их характер, приоритет и т. д.);
■ поток ошибок оператора (моменты или вероятности возникновения ошибок, их последействие, время исправления и т. п.);
■ индивидуальные психофизиологические характеристики операторов, оказывающие влияние на их деятельность;
■ особенности протекания процесса управления (например, временные ограничения в системе «человек-машина».
На первом этапе моделирования проводится формализованное описание деятельности оператора. После этого строится математическая модель, т. е. деятельность оператора описывается с помощью математических объектов (формул, уравнений, неравенств). Для моделирования на ЭВМ модель преобразуется в моделирующий алгоритм, на основании которого составляется программа моделирования.
Более подробно эти задачи выглядят так. При формализации деятельности оператора могут быть учтены многие психофизиологические закономерности операторской деятельности: недоступность обслуживания, процессы памяти, возникновение напряженности и утомления, возникновение ошибок и их исправление, взаимодействие операторов, динамика работоспособности и др. [168].
Недоступность обслуживания обусловлена периодами недоступности, наличие которых объясняется тем, что часть рабочего времени оператора представляется ему для отдыха, кроме того, у него могут быть и иные обязанности, непосредственно не связанные с обслуживанием поступающей информации. Периоды недоступности задаются законом распределения и вероятностью появления их в течение определенного промежутка времени.
При описании процессов памяти рассматриваются основные процессы, связанные с хранением и воспроизведением информации. В этих процессах участвуют два вида памяти: долговременная и кратковременная. Любая поступающая информация поступает в кратковременную память, имеющую определенный объем k0. Информация сохраняется в течение времени, не превышающего длительность следа кратковременной памяти.
Информация, вытесненная из кратковременной памяти, с определенной вероятностью направляется в долговременную память либо теряется. Информация, находящаяся в кратковременной памяти, а также направленная в долговременную, воспроизводится полностью и без потерь. Однако время обслуживания в последнем случае увеличивается на величину τп — время поиска информации в долговременной памяти, или время обращения к долговременной памяти. Вероятность потери, вероятности обслуживания кратковременной и долговременной памятью, время поиска используются в качестве исходных данных и определяются либо экспериментально, либо расчетным путем с использованием моделей памяти [16].
Напряженность в работе оператора может быть двух типов: операциональная и эмоциональная. При формализации деятельности оператора учитывается обычно только операциональная напряженность, возникающая вследствие сложности выполняемой работы за пультом управления. Эмоциональная напряженность не
рассматривается из-за трудностей количественного описания степени напряженности такого вида.
При моделировании вводятся две степени состояния оператора: ненапряженное (нормальное) и напряженное состояние, которое является источником дополнительных ошибок.
Нормальное состояние имеет место, когда число поступивших сигналов не превышает объем кратковременной или оперативной памяти и не возникает дефицит времени при обработке информации. При нарушении любого из этих условий возникает напряженность. Условия возникновения этих состояний можно записать следующим образом:
где τож — время ожидания начала обслуживания данного сигнала; τпр.доп — допустимое время пребывания сигнала на обслуживании, или лимит времени, отводимый на обслуживание данного сигнала. Очевидно, чем больше τож, тем меньше времени отводится для обслуживания.
Из выражений (9.1) и (9.2) следует, что дефицит времени возникает тогда, когда оператор видит, что оставшегося времени (τдоп — τож) ему не хватит для своевременной обработки сигнала, если он будет работать с нормальной скоростью. Это требует от него более интенсивной (т. е. напряженной) работы и связано обычно с увеличением числа ошибок.
Взаимодействие операторов в процессе обслуживания поступающей информации может оказать как положительное, так и отрицательное влияние на результаты деятельности исследуемого оператора. Положительное влияние проявляется в возможности дублирования (резервирования) работы оператора. Резервирование приводит к уменьшению вероятности совершения ошибки при некотором увеличении времени обслуживания.
Отрицательное влияние взаимодействия заключается в выполнении оператором дополнительной работы, связанной с контролем действий других операторов, проверкой получаемых от них данных, ответами на запросы, исправлением их ошибок и т. д. Для учета этого во входящий поток вводится дополнительный поток требований, обусловленный взаимодействием.
При рассмотрении динамики работоспособности оператора учитывается влияние «вхождения» в работу (врабатываемости) и утомления. Для учета этих явлений основные характеристики деятельности оператора задаются в функции времени его работы за пультом управления. Эта функция графически изображена на рис. 4.9.
Для учета возможности совершения оператором ошибочных действий и их исправления требуется решение нескольких задач: моделирование события «возникновение ошибки», решение вопроса о судьбе сообщения, при обслуживании которого было допущено ошибочное действие; учет последействия потока ошибок.
Моделирование ошибок заключается в следующем. В результате экспериментальных исследований определяется вероятность совершения ошибки ρош, после чего по жребию выбирается соответствующий результат для получения события «возникновение ошибки при обслуживании данного сообщения». Это имеет место при выполнении условия
(9.3)
где — число, равномерно распределенное в интервале [0, 1], вырабатываемое ЭВМ.
В процессе решения вопроса о судьбе требования, при обслуживании которого совершено ошибочное действие, обычно принимается следующий вариант: при совершении ошибки обслуживание прекращается и возобновляется только после ее исправления.
Последействие потока ошибок определяет взаимную зависимость вероятностных характеристик потока для двух непересекающихся между собой интервалов времени. С целью введения последействия ρош задается как функция длины очереди. При этом последействие проявляется в том, что совершение ошибки и необходимость ее исправления приводят к увеличению длины очереди, а следовательно, и к увеличению вероятности ошибки при обслуживании последующих требований. Проведенные исследования показывают, что зависимость ρош = f (k) носит линейный характер.
Для моделирования на ЭВМ необходимо преобразовать построенную модель исследуемого процесса (процесса функционирования оператора) в специальный моделирующий алгоритм, в соответствии с которым в машине вырабатывается информация, описывающая элементарные явления исследуемого процесса с учетом их связей и взаимных влияний. Укрупненная структурная схема алгоритма приведена на рис. 9.2.
Рис. 9.2. Структурная схема имитационной модели обслуживания.
В соответствии с принятыми обозначениями арифметические блоки изображены прямоугольниками, логические — ромбами. Если условие, проверяемое логическим блоком, выполнено, то управление передается по стрелке с индексом 1, в противном случае — по стрелке с индексом 0.
Принцип работы схемы заключается в следующем. Блок 1 формирует моменты поступления tj очередных сообщений в соответствии с заданным законом распределения. Блок 2 производит подсчет числа k сообщений, одновременно находящихся на обслуживании. Блок 3 проверяет условие ρсов<ξ, (где ρсов — вероятность совместного обслуживания двумя операторами). Выполнение этого условия свидетельствует о наличии резервирования при обслуживании данного сообщения.
Блоки 4 и 5 производят вычисление основных характеристик деятельности оператора. Эти характеристики различны при резервировании и отсутствии резервирования и являются функциями от длины очереди и времени. Блок 6 проверяет условия возникновения напряженности в соответствии с выражениями (9.1) и (9.2). В зависимости от результатов этой проверки блоки 7 и 8 моделируют процесс обслуживания в нормальных и напряженных условиях.
Блок 9 подсчитывает количество проделанных реализаций N*, а блок 10 сравнивает его с числом N — количеством реализаций, необходимым для достижения заданной точности моделирования. При N*<N моделирование продолжается, при N*=N — заканчивается и блок 11 выдает результаты моделирования на печать. В зависимости от целей моделирования на печать могут быть выданы различные характеристики моделируемого процесса: вероятностные характеристики очереди и времени ожидания, продолжительность пауз между обслуживанием сообщений и т. д.
С их помощью вычисляются многие характеристики деятельности оператора: степень загрузки, периоды занятости, своевременность решения задач и др. Зная их, можно определить допустимую плотность (темп поступления) задач, произвести оценку загрузки оператора, выявить характер и частоту появления различных ситуаций в системе «человек-машина».
Рис. 9.3. Структурная схема имитационной модели групповой деятельности.
Схема моделирующего алгоритма (рис. 9.2) носит самый общий характер и показывает лишь общий принцип построения имитационной модели обслуживания. В более подробном виде она произведена в [45, 70].