Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Протоколи стеку TCP/IP.



Стек TCP/IP используется для связи компьютеров всемирной информацион­ной сети Интернет, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физи­ческого и канального уровней: для локальных сетей — это Ethernet, Token Ring, FDDI, для глобальных — протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, PPP, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека являются протоколы IP и TCP (сетевой (3) и транспортный (4) уровни). IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

Стек TCP/IP содержит протоколы прикладного уровня:

· протокол пересылки файлов FTP,

· протокол эмуляции терминала telnet,

· почтовый протокол SMTP, исполь­зуемый в электронной почте сети Интернет,

· гипертекстовые сервисы службы WWW и др.

Сегодня стек TCP/IP представляет собой самый распространенный стек транс­портных протоколов вычислительных сетей.

Поскольку стек TCP/IP изначально создавался для глобальной сети Интернет, он имеет много особенностей:

1) способность фрагментировать паке­ты. При переходе из одной сети, имеющей большую макси­мальную длину, в сеть с меньшей максимальной длиной может возникнуть необ­ходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

2) гибкая система адресации, позволяющая проще чем другие протоколы аналогичного назначения включать в интерсеть сети разных технологий. Это свойство также способствует примене­нию стека TCP/IP для построения больших гетерогенных сетей.

3) экономно используются возможности широковещатель­ных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

«--» : высокие требования к ресурсам и сложность администрирова­ния IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации больших вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети разнообразных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, в том числе и на облегчение конфигурирования оборудования, но в то же время сама требует пристального внимания со стороны администраторов.

Сегодня это самый популярный стек протоколов, широко используемый как в глобальных, так и локальных сетях.


7.Маршрутизатори. NAT

“Маршрутизатор – это устройство сетевого уровня эталонной модели OSI, использующее одну или более метрик для определения оптимального пути передачи сетевого трафика на основании информации сетевого уровня”. Маршрутизатор выбирает наилучший путь. То, какой путь лучше, определяется количественными показателями, которые называются метриками. Лучший путь – это путь с наименьшей метрикой. В метрике может учитываться несколько показателей, например, длина пути, время прохождения и т.д.

Маршрутизаторы делят на устройства верхнего, среднего и нижнего классов.

  • Высокопроизводительные маршрутизаторы верхнего класса служат для объединения сетей предприятия.
  • С помощью маршрутизаторов среднего класса формируются менее крупные сетевые объединения масштаба предприятия.
  • Маршрутизаторы нижнего класса предназначаются для локальных сетей подразделений; они связывают небольшие офисы с сетью предприятия.

По определению, основное назначение маршрутизаторов – это маршрутизация трафика сети. Процесс маршрутизации можно разделить на два иерархически связанных уровня:

  • Уровень маршрутизации. На этом уровне происходит работа с таблицей маршрутизации. Таблица маршрутизации служит для определения адреса (сетевого уровня) следующего маршрутизатора или непосредственно получателя по имеющемуся адресу (сетевого уровня) и получателя после определения адреса передачи выбирается определенный выходной физический порт маршрутизатора. Этот процесс называется определением маршрута перемещения пакета. Настройка таблицы маршрутизации ведется протоколами маршрутизации.
  • Уровень передачи пакетов. Перед тем как передать пакет, необходимо: проверить контрольную сумму заголовка пакета, определить адрес (канального уровня) получателя пакета и произвести непосредственно отправку пакета с учетом очередности, фрагментации, фильтрации и т.д.
  • Определение маршрута передачи данных происходит программно. Соответствующие программные средства носят названия протоколов маршрутизации. Логика их работы основана на алгоритмах маршрутизации. Алгоритмы маршрутизации вычисляют стоимость доставки и выбирают путь с меньшей стоимостью. Простейшие алгоритмы маршрутизации определяют маршрут на основании наименьшего числа промежуточных (транзитных) узлов на пути к адресату. Более сложные алгоритмы в понятие “стоимость” закладывают несколько показателей, например, задержку при передаче пакетов, пропускную способность каналов связи или денежную стоимость связи. Основным результатом работы алгоритма маршрутизации является создание и поддержка таблицы маршрутизации, в которую записывается вся маршрутная информация

Основными требованиями, предъявляемыми к алгоритму маршрутизации являются:

  • Оптимальность выбора маршрута;
  • Простота реализации;
  • Устойчивость;
  • Быстрая сходимость;
  • Гибкость реализации.

Когда маршрутизатор получает пакет, он считывает адрес назначения и определяет, по какому маршруту отправить пакет. Обычно маршрутизаторы хранят данные о нескольких возможных маршрутах. Выбор маршрута зависит от нескольких факторов, в том числе:

  • Применяемой системы измерения длины маршрута (его метрики);
  • Маршрутизируемого протокола высокого уровня;
  • Топологии сети.

На уровне маршрутизации существуют три основные группы протоколов маршрутизации (деление на группы определяется типом реализуемого алгоритма определения оптимального маршрута):

  • Протоколы вектора расстояния;
  • Протоколы состояния канала;
  • Протоколы политики маршрутизации;

Протоколы вектора расстояния – самые простые и самые распространенные. Протоколы данной группы включают RIP IP, RIP IPX, AppleTalk и Cisco IGRP. Свое название этот тип протокола получил от способа обмена информацией. Он может работать эффективно только в небольших сетях. Это связано с тем, что в крупных сетях поток сообщений между маршрутизаторами резко возрастает. При этом большинство из них являются избыточными (так как изменения сетевой топологии происходят довольно редко). Как следствие – действительно необходимая информация подчас долго гуляет по сети, и маршрутизаторы обновляют свои таблицы с большой задержкой

Протоколы состояния канала значительно сложнее, чем протоколы вектора расстояния. Вместо рассылки соседям содержимого своих таблиц маршрутизации, каждый маршрутизатор осуществляет широковещательную рассылку списка маршрутизаторов, с которыми он имеет непосредственную связь, и списка напрямую подключенных к нему локальных сетей. Эта информация является частью информации о состоянии канала. Она рассылается в специальных сообщениях. Примерами этих протоколов служат OSPF, IS–IS, Nowell NLSP и Cisco EIGRP.

К третьей группе протоколов относятся протоколы политики (правил) маршрутизации. Эти протоколы наиболее эффективно решают задачу доставки получателю информации. Эта категория протоколов используется при маршрутизации в Internet и позволяет операторам получать информацию о маршрутизации от соседних операторов на основании специальных критериев. Примерами протоколов данной категории могут служить BGP и EGP.

NAT (Network Address Translation— преобразование сетевых адресов) представляет собой стандарт IETF (Internet Engineering Task Force — рабочая группа разработки технологий интернета), с помощью которого несколько компьютеров частной сети (с частными адресами из таких диапазонов, как 10.0.x.x, 192.168.x.x, 172.x.x.x) могут совместно пользоваться одним адресом IPv4, обеспечивающим выход в глобальную сеть. Основная причина растущей популярности NAT связана со все более обостряющимся дефицитом адресов протокола IPv4. Средство общего доступа к подключению интернета в операционных системах Windows XP и Windows Me, а также многие шлюзы интернета активно используют NAT, особенно для подключения к широкополосным сетям, например, через DSL или кабельные модемы.

NAT не только позволяет сократить число необходимых адресов IPv4, но и образует дополнительную защиту частной сети, поскольку с точки зрения любого узла, находящегося вне сети, связь с ней осуществляется лишь через один, совместно используемый IP-адрес. NAT — это не то же самое, что брандмауэр или прокси-сервер, но это, тем не менее, важный элемент безопасности.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.