Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Синергетика — новый научный метод



Аналогию процессов, происходящих в сложных нелинейных системах, с фазовыми переходами отметили несколько ученых, работавших в квантовой электронике: немецкие ученые Грэхем и Хакен и итальянские — де Джиржио и Скулли в 1970 г. Если рассматривать излучение лазера и лампы накачки, то можно сказать, что оно претерпело фазовый переход и изменило свои свойства — свет стал когерентным, более узким в спектральном отношении и усиленным по направлению испускания. Сначала такая аналогия казалась поверхностной, но с каждым параметром фазового перехода в парамагнетике удалось сопоставить соответствующий параметр квантовой генерации. Возражение, касающееся искусственности создания самого прибора, творящего эти превращения со светом, были сняты, когда открыли мазеры в космическом пространстве, где генерация происходила естественным путем.

Коллективные процессы Г. Хакен выделил во всех самоорганизующихся системах: коллективно организуются молекулы в узлах кристаллической решетки, элементарные магнитные моменты (спины) в ферромагнетике, вихри внутри жидкости, порождая види-


мую на макроскопическом уровне структуру. Возбуждаясь в рабочем веществе лазера, атомы самосогласованно и коллективно испускают когерентное излучение. Итак, кооперативность — общая черта процессов самоорганизации. Кроме того, инверсная населенность, как и неравновесное состояние в жидкостях, должна поддерживаться внешней средой, только в этом случае возникающие структуры будут устойчивы. Система должна быть открытой. Устойчивые структуры возникают при обмене с внешней средой энергией (или веществом — для биологических систем), которые могут поддержать отклонение от равновесия. Этот внешний поток не только гасит рост энтропии, но может привести к ее понижению. И еще: для самоорганизующихся систем непременными атрибутами являются сложное движение, описываемое нелинейными уравнениями, и пороговый характер возникновения.

Эти самоорганизующиеся системы и процесс самоорганизации математически оформили следующим образом: сначала просто записали связь эффекта с его причиной в зависимости от времени, а потом исключили внешнее воздействие, предоставив систему самой себе. Хакен расширил систему так, чтобы включенные в уравнения внешние силы стали силами внутренними, и описал механизм нарастания внутренних флуктуаций с помощью введения стохастического члена. Так самоорганизация определяется характером взаимодействия случайных и необходимых факторов системы и ее среды. В дальнейшем он разработал теорию лазерной генерации как фазового перехода, а потом теорию гидродинамических неустойчивостей как фазовых переходов. Для них удалось получить не только теоретическое подтверждение факта существования ячеек Бенара, но и описание положения шестиугольных цилиндров и их диаметров. И каждый раз в этой аналогии открывались более глубинные черты. Развиваемый метод дал интересные результаты при рассмотрении фазового перехода — разрушения упругой конструкции (моста, например). Так стал работать новый метод — синергетический, основанный на идее синтеза.

Самоорганизация происходит при генерации в атомной системе. В кристалле твердотельного лазера имеются активные, возбужденные накачкой от внешнего источника атомы, которые работают как антенна и испускают цуг волн. При малой мощности накачки световые цуги испускаются независимо друг от друга, и лазер работает как обычная лампа, испуская некогерентный свет. Начиная с некоторого значения мощности накачки (порогового) все антенны начинают работать согласованно, атомы испускают свет в одной фазе, возникает гигантский цуг когерентного лазерного излучения, интенсивность излучения резко возрастает (на торцах кристалла — зеркала, отбирающие цуги). Переход лазера в режим генерации соответствует образованию ячеек Бенара. В сверхкритической области устанавливается стабильный режим лазера,


тогда как у простой лампы — неустойчивый. Очевидно, что лазер является системой, находящейся вдали от равновесия. Наблюдается кооперативное поведение атомов и излучения.

К основным свойствам самоорганизующихся систем относятся открытость, нелинейность, диссипативность. Система должна находиться в состоянии, далеком от равновесия.

Открытость системы обеспечивается непрерывным потоком вещества, энергии или информации, получаемым из внешней среды на поддержание определенного состояния. В таких системах флуктуации играют определяющую роль, могут привести к необратимому макроскопическому изменению состояния системы, разрушить созданный в ней порядок.

На нелинейные системы не распространяется принцип суперпозиции, т.е. возможно, чтобы совместные действия двух причин привели к результату, совершенно отличному от того, который был бы, если эти причины действовали по отдельности. Процессы в нелинейных системах носят пороговый характер — в состояниях, далеких от равновесия, слабые возмущения могут усиливаться и радикально перестроить систему. Нелинейные системы, открытые и неравновесные, сами создают в среде неоднородности. Между средой и системой может установиться положительная обратная связь (так, в реакции может вырабатываться фермент, присутствие которого стимулирует выработку его же самого). Важно найти эту петлю положительной обратной связи, и в системе начнется режим самоорганизации. В химии — это автокатализ, в молекулярной биологии — основа жизни. Системы неравновесные необычно и «чутко» реагируют на внешнее воздействие и «учитывают» их в своем функционировании. Поэтому некоторые слабые воздействия могут оказать на эволюцию системы большее влияние, чем сильные, но не адекватные собственным тенденциям системы.

Диссипативность — качественно своеобразное макроскопическое проявление процессов, происходящих на микроуровне. Она проявляется в разных формах: в способности «забывать» детали некоторых внешних воздействий; в «естественном отборе» среди многих микропроцессов для обеспечения основной тенденции развития; в когерентности микропроцессов, устанавливающей темп развития, и пр. С диссипативностью связано понятие «параметр порядка», который выделяет только ведущие степени свободы из всех возможных для системы. Уравнения для параметров порядка намного проще, и основная задача — найти параметры порядка системы при моделировании поведения системы.

Примером возникающей самоорганизации являются вихревые структуры в виде двойной спирали, впервые обнаруженной в закрученных газовых потоках в трубке Ранка—Хилша (рис. 13.7, а, б) в Институте теплофизики СО РАН группой исследователей (Ю.Н.Дубнищев, В. А. Арбузов, П. П. и П.Я.Белоусовы). Интерес


Рис. 13.7. Биспиральные вихревые структуры в закрученных потоках,

проявляющиеся посредством визуализации поля оптической фазовой

плотности (а) и поля скоростей в заданном сечении (б)

к таким системам связан с попытками построить адекватную физическую модель энергоразделения в закрученных потоках, где структуры возникают при определенных угловых скоростях. Еще один пример упорядоченных волновых структур, имеющих синер-гетическую природу и возникающих на поверхности вращающихся жидкостей и тонких пластин, показан на рис. 13.8.

Итак, переход от хаоса к порядку поддается математическому моделированию, причем универсальных моделей такого перехода оказалось не так много. Они пригодны в разных областях естествознания, в истории, экономике, экологии и пр. История развития природы — история образования все более сложных форм, которые обеспечивают эволюцию природы на всех уровнях организации — вплоть до самых высших. Э. Ферми и Д. Нейман в 50-е гг.


XX в. решали на ЭВМ задачи о возникновении теплового хаоса в цепочке грузов с нелинейными пружинками. Ферми, Паста и Улам (ФПУ) получили неожиданный результат: такая система описывается уравнением КдФ. Так солитоны обрели второе рождение (см. гл. 3). Они ведут себя как частицы, и были найдены в разных средах. Ярким приложением солитонной теории стало явление самоиндукцированной прозрачности, которое привело к идее «оптического телеграфа» — передачи светового солитона по стекловолокну.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.