Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ОБЩАЯ ХАРАКТЕРИСТИКА НЕПРЕРЫВНОЙ РАЗЛИВКИ



1. Разновидности и преимуществаспособа

Непрерывную разливку или литье вместо разливки стали в изложницы начали применять в последние 30 лет. В настоя­щее время этим способом разливают около 83% выплавляемой в мире стали, а в развитых капиталистических странах до 97% производимой стали.

Наиболее распространен способ непрерывной разливки, заключающийся в том, что жидкую сталь непрерыно заливают в водоохлаждаемую изложницу без дна — кристаллизатор, из нижней части которого вытягивают затвердевший по перифе­рии слиток с жидкой сердцевиной. Далее слиток движется через зону вторичного охлаждения, где полностью затверде­вает, после чего его разрезают на куски определенной дли­ны. Основа этого способа — вытягивание формирующегося слитка из кристаллизатора, т.е. скольжение слитка по его стенкам с возникновением при этом значительных сил тре­ния, что является определенным недостатком способа; из-за трения возникают разрывы затвердевающей оболочки движуще­гося слитка, что ограничивает скорость разливки. Этим способом в настоящее время получают преимущественно литые заготовки (слитки) толщиной от 100—150 до 250—300 мм, что позволило ликвидировать два энергоемких этапа металлурги­ческого производства— прокатку на обжимных станах и наг­рев слитков перед этой прокаткой в нагревательных колод­цах.

Интенсивно ведутся исследования по дальнейшему совер­шенствованию и разработке новых оборудования и технологии непрерывной разливки. Одно из важных разрабатываемых на­правлений — получение литых заготовок значительно меньшей толщины, чем внастоящее время (например, тонких слябов и полос) и заготовок, приближающихся по сечению к конечному прокату, что позвлит применять для их прокатки станы меньшей мощности, обеспечивая экономию энергозатрат.

Другим важным направлением является начавшееся внедре­ние способа непрерывной разливки, предусматривающего пе­ремещение рабочей поверхности кристаллизатора (в виде вращающихся колес, лент и др.) вместе со слитком в на-554


чальный период его формирования, что исключает трение и позволяет существенно увеличить скорость разливки (ско­рость движения слитка).

Еще одно перспективное и уже давно разрабатываемое на­правление — создание литейно-прокатных агрегатов, позво­ляющих сочетать непрерывную разливку с прокаткой. Непре­рывным способом разливают преимущественно спокойную сталь, поскольку при разливке кипящей стали не достигает­ся существенного увеличения выхода годного и трудно полу­чить достаточную толщину беспузыристой корки в слитке из-за большой скорости разливки и сложности обеспечения не­обходимой степени окисленности металла.

Основные преимущества непрерывной разливки по сравнению с разливкой визложницы:

1) существенно повышается выход годного металла. Так, для спокойной стали получение слябов или блюмов путем не­прерывной разливки вместо разливки в изложницы с после­дующей прокаткой обеспечивает повышение выхода годного на 10—15 % от массы разливаемой стали. Объясняется это тем, что верхняя часть каждого слитка (13—20 %) идет при про­катке в обрезь из-за наличия усадочной раковины, а при непрерывной разливке образуется одна усадочная раковина в конце разливки плавки;

2) упрощается и удешевляется производство по заводу в целом, т.к. исключаются два энергоемких этапа технологи­ческого процесса — прокатка слитков на обжимных станах (блюмингах или слябингах) и нагрев слитков до ~1100°С внагревательных колодцах перед прокаткой; при этом отпада­ет необходимость в блюмингах и слябингах, уменьшаются энергетические затраты, потребность в рабочей силе и пло­щадь завода;

 

3) повышается качество металла, в первую очередь вследствие снижения химической неоднородности из-за более быстрого затвердевания малых по толщине слитков;

4) уменьшаются затраты ручного труда и улучшаются условия труда при разливке;

5) создаются условия для автоматизации процесса раз­ливки.

Комплекс оборудования и механизмов для непрерывной разливки — называют установкой непрерывной разливки стали - УНРС или машиной непрерывного литья заготовок — МНЛЗ.


2. Основные типы УНРС

УНРС с вытягиванием слитка из кристаллизатора. УНРС этого типа, как отмечалось, нашли наиболее широкое применение и имеют много разновидностей. В зависимости от направления основной технологической оси установки (направления дви­жения отливаемого слитка) различают (рис. 166) УНРС вер­тикального типа а, с изгибом слитка б, вертикально-радиальные в, радиальные г, криволинейные д, наклонно-криволинейные е, горизонтальные ж.

В зависимости от формы поперечного сечения отливаемого слитка различают слябовые УНРС; сортовые и блюмовые; УНРС для отливки заготовок круглого сечения; полых трубных за­готовок; слитков сложного профиля, близких по сечению к готовому прокату.

Широкое промышленное применение нашли слябовые УНРС (отливка слитков плоского сечения толщиной 150—300 и ши­риной до 2600 мм), сортовые и блюмовые (отливка слитков квадратного сечения размером до 400x400 мм и слитков пря­моугольного сечения с небольшой величиной отношения шири­ны к толщине (до 1,5—2,0) при толщине до 300 мм; реже применяются УНРС для отливки слитков круглого сечения ди­аметром до 500 мм. УНРС для отливки полых трубных загото­вок и заготовок сложного профиля (например, двутаврового) находятся в стадии промышленного освоения.

В последние годы начали внедрять УНРС для отливки тон­ких слябов (толщиной 30—70 мм).


Рис. 166. Разновидности УНРС с вытягиванием слитка из кристал­лизатора: 1 — кристаллизатор; 2 — отливае­мый слиток

В зависимости от числа одновременно отливаемых из од­ного сталеразливочного ковша слитков,. УНРС могут быть одно-, двух- и многоручьевыми; с увеличением числа ручьев увеличивается производительность установки. Слябовые УНРС


обычно делают двухручьевыми, сортовые и блюмовые — чаще трех-восьмиручьевыми. Разливку на УНРС ведут до израсхо­дования металла в сталеразливочном ковше или же разливают без перерыва металл из нескольких ковшей (разливка мето­дом "плавка на плавку").

Применяют также установки полунепрерывной разливки, на которых отливают слиток определенной длины (6-10 м). Этот слиток затем разрезают на части в холодном состоянии.

Скорость разливки, то есть скорость движения слитка при его толщине более 150 мм обычно находится в пределах от 0,5 до 1,5—2,5 м/мин, хотя на отдельных УНРС достигну­ты и большие скорости; при отливке слитков малой толщины (квадрат размером менее 90x90 мм и слябы толщиной менее 70 мм) скорость разливки достигает 4—8 м/мин.

УНРС без скольжения слитка в кристаллизаторе начали применять для разливки стали в последние годы. Отсутствие скольжения обеспечивается за счет совместного движения поверхности кристаллизатора и слитка в начале его форми­рования, что достигается подачей жидкого металла на дви­жущуюся охлаждаемую поверхность, выполняющую роль крис­таллизатора.

Основные разновидности УНРС подобного типа: барабанные и одноленточные с подачей жидкого металла на поверхность вращающегося барабана (валка) или движущейся непрерывной ленты; двухвалковые, когда металл подают в зазор между двумя вращающимися валками; двухленточные когда металл подают в зазор между двумя движущимися непрерывными лен­тами (сплошными или гусеничными); барабанно-ленточные (роторные), когда металл льют в зазор между вращающимся барабаном и движущейся лентой.

УНРС последнего типа (роторные) применяют для отливки слитков с сечением, близким к прямоугольному толщиной до 160мм, остальные— для отливки полос и лент толщиной ме­нее 10—20 мм и шириной до 800—1000 мм.

Благодаря отсутствию трения между слитком и кристал­лизатором скорость движения отливаемого слитка на таких УНРС значительно выше, чем на УНРС со скольжением слитка; при отливке полос и лент толщиной менее 1—2 мм эта ско­рость может достигать 100—150 м/мин и более.


 




3. Затвердевание непрерывно вытягиваемого слитка

Из промежуточного ковша

Принципиальная схема непрерывной разливки с вытягиванием затвердевающего слитка из кристаллизатора показана на рис. 167. В таком слитке можно выделить два участка активного охлаждения — кристаллизатор и зону вторичного охлаждения. Заливаемый в кристаллизатор металл при кон-такте с его медными водоохлаждаемыми стенками переохлаж­дается и затвердевает, образуя корку слитка требуемой конфигурации. На расстоянии 200—600 мм от верха кристал­лизатора находится зона непосредственного контакта с кор­кой слитка, где теплоотвод максимальный (1,4—2,3 МВт/м2); ниже вследствие усадки корки между ней и стенками крис­таллизатора возникает газовый зазор, резко снижающий теп­лоотвод (до 0,3—0,6 МВт/м2). В этой зоне вследствие воз­можной деформации непрочной корки и стенок кристаллизато­ра могут появляться участки плотного и неплотного контак­та, в которых из-за различия в теплоотводе температура и толщина затвердевающей корки будут различаться. Эта неод­нородность способствует возникновению дефектов — в местах уменьшенной толщины корки вследствие термических напряжений могут возникать продольные наружные трещины, а в пере­охлажденных участках плотного контак­та — паукообразные поверхностные тре­щины.

Толщина корки на выходе из кристал­лизатора должна быть достаточной, что­бы выдержать усилие вытягивания и дав­ление жидкой стали. Эта толщина тем больше, чем больше время пребывания корки в кристаллизаторе и обычно сос­тавляет 10—25 мм, а температура по­верхности 900-1250 °С.

В зоне вторичного охлаждения на по­верхность движущегося слитка подают распыленную воду и устанавливают опор-Рис. 167. Схема отливки и затвердевания непре­рывного слитка:

1 г- кристаллизатор; 2 — жидкий металл; 3 - за­твердевший металл; 4 — опорный ролик; 5 — форсунка для подачи распьЕленной воды на слиток; 6 — тянущие

валки


ные устройства (например, ролики 4, см. рис. 167), кото­рые предотвращают возможное выпучивание корки слитка под воздействием давления столба жидкой стали. Выбор способа охлаждения в этой зоне базировался на опыте, который по­казал, что при слишком интенсивной подаче охладителя (на­пример, подаче воды струями) из-за переохлаждения поверх­ности слитка и возникающих при этом термических напряже­ний в слитке образуются внутренние и сетчатые поверхност­ные трещины. Поэтому применяют распыленную воду ("мягкое охлаждение"). Расход воды уменьшается по мере отдаления от кристаллизатора; его рассчитывают так, чтобы отводи­лось тепло, выделяющееся при кристаллизации стали, а тем­пература корки во избежание образования трещин снижалась бы от исходной (900-1250 °С в начале зоны) не более, чем до 800-1000 °С в конце, причем в тем меньшей степени, чем выше склонность стали к трещинообразованию.

Длина зоны вторичного охлаждения составляет 80—100 % глубины лунки жидкого металла в слитке. Эту глубину (м) приближенно определяют по эмпирической формуле L = Ka\ где а — толщина отливаемого слитка, м; v — скорость вытя­гивания слитка, м/мин; К - коэффициент, зависящий от ве­личины отношения ширины Ъ к толщине а слитка (при величи­не Ь/а, равной 1, 2, 3, 4, 6 и более, величина К соответ­ственно составляет 240, 290, 320, 332 и 340 Мин/м2). Например, при отливке сляба сечением 300x1200 мм со ско­ростью 0,6 м/мин, глубина лунки составит 17,2 м, а при скорости 1,2 м/мин — 34,4 м.

Как показал опыт, продвижение фронта затвердевания в кристаллизаторе и зоне вторичного охлаждения, несмотря на нозникновение в кристаллизаторе участков неравномерности, в целом удовлетворительно подчиняется закону квадратного корня, т.е. толщину корки (см) можно определить по фор­муле

5 = У т или S = kv l/v ,

где т — длительность затвердевания, мин; / — расстояние от данной точки до уровня металла в кристаллизаторе, м; v — скорость разливки, м/мин; к — коэффициент затвердева­ния, изменяющийся от 2,3 до 3,3см/мин0,5 (величина к уменьшается при увеличении сечения слитка и зависит также от состава стали и ряда условий охлаждения).


В непрерывном слитке наблюдаются те же структурные зо­ны, что и при разливке в изложницы — мелкие неориентиро­ванные кристаллы у поверхности, расположенные за ними столбчатые кристаллы и различно ориентированные кристаллы в середине слитка.

& 2. УСТРОЙСТВО УСТАНОВОК НЕПРЕРЫВНОЙ РАЗЛИВКИ1. УНРС с вытягиванием и скольжением слитка

Существует несколько типов установок непрерывной разлив­ки, основанных на вытягивании слитка из кристаллизатора с их взаимным скольжением. Широко применяемые УНРС этого типа служат в основном для отливки слябов и слитков квад­ратного и прямоугольного сечения. Наибольшее распростра­нение получили установки вертикального, криволинейного и радиального типов, реже применяются вертикально-ради­альные УНРС, установки с изгибом слитка, горизонтальные УНРС. В последние годы внедряют УНРС для отливки тонких слябов, разрабатываются наклонно-криволинейные установки. В зависимости от количества одновременно отливаемых слит­ков УНРС могут быть одно-, двух- и многоручьевыми. Вертикальные УНРС

На рис. 168 показана схема одной из вертикальных УНРС, располагаемой частично в колодце и частично в надземном сооружении. Из сталеразливочного ковша сталь поступает в промежуточный, а из него в кристаллизатор с вертикальными стенками, совершающий возвратно-поступательное движение вверх—вниз. После выхода из кристаллизатора слиток с жид­кой сердцевиной движется вниз через зону вторичного охлаждения, включающую систему форсунок и опорные устрой­ства, которые могут быть выполнены в виде роликов или брусьев и предотвращают выпучивание корки слитка.

В установке, показанной на рис. 168, верхние опорные устройства выполнены в виде расположенных вдоль слитка чугунных брусьев, по которым скользит слиток. Ниже брусьев расположены опорные вращающиеся ролики (непривод­ные). Для облегчения монтажа и ремонта группы брусьев или роликов объединяют общим каркасом в отдельные секции. В машинах для отливки слитков квадратного или близкого к


 

Рис. 168. Схема УНРС вертикально­го типа:

1 — сталеразливочный ковш; 2 — промежуточный ковш; 3 — кристал­лизатор; 4 — опорная рама крис­таллизатора; 5 — механизм качания кристаллизатора; 6 — секции опор­ных брусьев; 7 — механизмы прижа­тия и перемещения брусьев и роли­ков; 8 — опорная колонна; 9 — секции опорных роликов; 10 — тя­нущая клеть; 11 — газорезка; 12 — путь подъемной тележки; 13 — те­лежка для подъема слитков

квадрату прямоугольного сечения опорные устройства расположены со всех четырех сторон слитка; при отливке плоских слитков — вдоль двух широких граней слит­ка. В машинах для отливки плос­ких слитков один ряд опорных ус­тройств закреплен жестко, а дру­гой снабжен механизмом перемеще­ния, что позволяет изменять тол­щину отливаемого слитка.

За зоной вторичного охлаждения расположена одна или две тянущие клети, которые обеспечивают вытягивание и регулирование скорости движения слитка, а также пред­отвращают проскальзывание слитка вниз. Каждая клеть сос­тоит из двух или трех пар валков, соединенных с приводом и прижимаемых к слитку гидроцилиндрами.

Ниже тянущих клетей движущийся слиток разрезают на куски мерной длины с помощью газорезки. Отрезанные заго­товки падают в корзину (тележку), которая, двигаясь по наклонным рельсам, поднимает заготовку до уровня пола це­ха и одновременно поворачивает ее в горизонтальное поло­жение.

Основной недостаток вертикальных УНРС — большая высо­та, обусловленная тем, что затвердевание слитка должно закончиться до его попадания в тянущую клеть и газорезку, а протяженность зоны затвердевания по высоте (глубина лунки жидкого металла) в непреывно отливаемом слитке очень велика. Высота крупных вертикальных УНРС достигает 40—45 м и для их размещения необходимо сооружение глубо-


ких колодцев и высоких зданий, что удорожает строительст­во и усложняет эксплуатацию оборудования. Другим сущест­венным недостатком является то, что необходимость ограни­чивать высоту УНРС ограничивает скорость разливки (при ее росте, как следует из приводившейся на с. 559 формулы, существенно возрастает глубина лунки жидкого металла, т.е. затвердевание может не закончиться до входа слитка в тянущую клеть и зону резки).

Криволинейные и радиальные УНРС

В установках этого типа в радиальном кристаллизаторе фор­мируется изогнутый по определенному радиусу слиток. Чтобы при последующем разгибании в слитке не образовывались трещины, радиус изгиба должен быть не менее 25-кратной толщины слитка. Обычно радиус изгиба выбирают в соответ­ствии с соотношением R = (3(Н40)д, где а — толщина слит­ка, м.

В радиальных УНРС по выходе из кристаллизатора слиток движется по дуге с постоянным радиусом. После прохождения нижней точки дуги полностью затвердевший слиток разги­бают, переводя его в горизонтальное положение.

В криволинейных УНРС слиток вначале движется по дуге, определяемой радиусом кривизны кристаллизатора, а затем еще в зоне вторичного охлаждения радиус кривизны дуги увеличивается, т.е. происходит постепенное разгибание слитка с жидкой сердцевиной с последующим переводом в горизонтальное положение. Рассредоточение деформации имеет целью снизить возникающие при этом в корке слитка напряжения и вероятность возникновения трещин.

Большая часть криволинейных УНРС предназначена для отливки слитков прямоугольного сечения, схема подобной машины для отливки слябов представлена на рис. 169. Жид­кая сталь из сталеразливочного ковша поступает в промежу­точный, а затем в радиальный кристаллизатор, снабженный механизмом качания. После выхода из кристаллизатора сли­ток, проходя через зону вторичного охлаждения, движется по роликовой проводке, образованной верхним и нижним ря­дами роликов. У узких торцевых граней ролики имеются лишь вблизи кристаллизатора. Для удобства замены при ремонтах группы соседних верхних и нижних роликов объединены в отдельные секции, где в общем каркасе смонтировано от 2


 

Рис. 169. Криволинейная слябовая УНРС:

'3 рабочая -4 площадка
\ш»жш,

1 — сталеразливочный ковш; 2 — промежуточный ковш; 3 — кристал­лизатор; 4 — опорная рама крис­таллизатора; 5 — механизм качания кристаллизатора; 6, 7, 9 — секции роликовой проводки (соответствен­но четырнадцати-, десяти- и че-тырехроликовые); 8 — опорные бал­ки; 10 — механизм прижатия и пе­ремещения роликов; 11 — газорез­ка; 12 — рольганг

до 7 пар роликов. Каждая секция опирается на фундамент, при этом нижний ряд роликов является неподвижным (базо­вым), а верхний снабжен пружинным или гидравлическим ме­ханизмом прижатия к слитку и механизмом перемещения, что позволяет изменять толщину отливаемого слитка.

Верхняя часть роликовой проводки предотвращает выпу­чивание корки слитка. Приводными, обеспечивающими движе­ние и разгибание слитка, обычно выполняют ролики нижнего ряда. При этом ролики, расположенные вблизи кристаллиза­тора обычно являются неприводными, на участке с постоян­ным радиусом кривизны лишь некоторые ролики соединены с приводом, а на участке разгибания и выпрямления все или почти все ролики приводные. В связи с тем, что по мере увеличения толщины затвердевающей корки жесткость слитка возрастает, диаметр роликов по мере отдаления от кристал­лизатора увеличивается. Так при отливке слитков толщиной 300 мм диаметр роликов от 150—200 мм у кристаллизатора возрастает до 480—600 мм на горизонтальном участке.


Машины конструируют так, что горизонтальноое движение слитка осуществляется на уровне пола цеха. На этом же участке производят резку слитка на куски мерной длины. Максимальный радиус существующих УНРС этого типа при отливке слитков толщиной до 350 мм составляет 12 м.

Основные преимущества этих машин по сравнению с верти­кальными: меньшая высота, что снижает стоимость сооруже­ния УНРС и здания цеха; возможность повышения скорости разливки, поскольку газорезку можно установить далеко от кристаллизатора и благодаря этому допустимо существенное увеличение глубины лунки жидкого металла в слитке; воз­можность резки слитка на куски большой длины. По этим причинам в последние годы почти отказались от сооружения вертикальных УНРС и строят преимущественно криволинейные и радиальные.

УНРС с изгибом слитка

УНРС этого типа (рис. 170, а) имеют вертикальный кристал­лизатор и вертикально направленную систему вторичного охлаждения с расположенной за ней тянущей клетью, которые не отличаются от аналогичных устройств машин вертикально­го типа. Далее движущийся слиток изгибают, переводя в горизонтальное положение при помощи ролика, установленно­го за тянущей клетью. Затем слиток поступает в выпрямляю­щие валки, за которыми располагают газорезку. Подобные машины применяют при отливке слитков небольшой толщины (< 150 мм), поскольку при большей толщине из-за необходи-

Рис. 170. Схема УНРС с изгибом
затвердевшего слитка (а) и верти­
кально-радиальной УНРС (б):
1
— промежуточный ковш; 2 — вер­
тикальный кристаллизатор; 3 - ме­
ханизм качания кристаллизатора;
4 — опорные ролики; 5 — тянущая
клеть; 6 — изгибающий валок; 7 —
слиток; 8 — тянуще-правильная
клеть; 9 - газорезка; 10-12 -
участки роликовой проводки соот­
ветственно вертикальный, изгибаю­
щий и радиальный; 13 — правильная
"• & машина


мости иметь большой радиус изгиба не достигается заметно­го снижения высоты по сравнению с вертикальной УНРС.

Вертикально-радиальные УНРС

Установки подобного типа имеют (рис. 170, б) вертикальный кристаллизатор и расположенный ниже него небольшой по вы­соте (менее 3—4 м) вертикальный участок зоны вторичного охлаждения, включающий опорные ролики и форсунки для по­дачи на слиток распыленной воды. Далее расположена секция валков, изгибающих слиток с жидкой сердцевиной по дуге с определенным радиусом и затем радиальная роликовая прово­дка. После прохождения нижней точки дуги слиток попадает в тянуще-правильные валки, которые переводят его в гори­зонтальное положение, затем слиток разрезают газорезкой.

Основное достоинство этих установок по сравнению с криволинейными и радиальными — более простые в изготовле­нии и обслуживании прямолинейные кристаллизатор и верх зоны вторичного охлаждения, хотя общая высота установки несколько больше, чем УНРС радиального типа (на 2-4 м).

Горизонтальные УНРС

Работа большинства установок горизонтального типа основа­на на периодическом вытягивании слитка из неподвижного кристаллизатора.

Технологическая ось машин этого типа расположена гори­зонтально или наклонена на угол до 15° к горизонтали. Сталь из разливочного ковша поступает (рис. 171) в футе­рованный металлоприемник и далее в жестко соединенный с

Рис. 171. Схема горизонтальной УНРС:

/ — сталеразливочный ковш; 2 — металлоприемник; 3 — огнеупорное раздели­тельное кольцо; 4 — кристаллизатор; 5 — зона вторичного охлаждения; 6 — во­дяные форсунки; 7 - слиток; 8 — механизм вытягивания слитка; 9 - газорезка; 10 — рольганг


 




ним кристаллизатор через разделительноое кольцо 3, отвер­стие в котором немного меньше размера полости кристалли­затора. Разделительное кольцо должно быть стойким против тепловых ударов и размывания потоком металла, быть мало­теплопроводным, чтобы здесь не застывала сталь, и к нему не должен прилипать затвердевающий металл; чаше раздели­тельное кольцо делают из нитрида бора.

После кристаллизатора затвердевший по периферии слиток попадает в зону вторичного охлаждения, которая представ­ляет собой рольганг с системой водяных форсунок; опорные устройства обычно отсутствуют, поскольку из-за малого ферростатического давления выпучивание корки слитка не происходит. Далее расположен механизм периодического вы­тягивания слитка. Механизм перемещает слиток вперед на 10—50 мм, затем возвращается назад, после чего цикл пов­торяется; во время обратного движения механизма слиток остается неподвижным, либо несколько осаживается назад. Число циклов изменяется от 20 до 200 в минуту. Периоди­ческое вытягивание слитка заменяет качание кристаллизато­ра, используемое на вертикальных и криволинейных машинах для предотвращения зависания и разрывов корки слитка в кристаллизаторе. За механизмом вытягивания расположена газорезка и рольганг с приводными роликами для транспор­тировки отрезанных заготовок на склад.

Горизонтальные УНРС применяют для отливки сортовых слитков квадратного сечения и прямоугольного сечения, близкого к квадратному толщиной до 200 мм и круглых заго­товок диаметром до 330 мм; скорость разливки 4м/мин.

Горизонтальные УНРС из-за малой высоты вписываются в габариты любого цеха и предназначены црежде всего для ус­тановки в существующих цехах при замене разливки в излож­ницы на непрерывную разливку. Помимо возможности размеще­ния в существующих цехах достоинства горизонтальных УНРС: небольшие капитальные затраты вследствие малой высоты и меньшего количества оборудования; свободный доступ персо­нала ко всем узлам УНРС вследствие их размещения на уров­не пола цеха; отсутствие необходимости регулировать рас­ход металла в кристаллизатор, поскольку он определяется скоростью вытягивания слитка; удаление поверхности жидко­го металла из кристаллизатора, что исключает в слитке де­фекты из-за окисления и охлаждения поверхности металла. 566


УНРС для отливки тонких слябов

Большинство существующих слябовых УНРС служат для отливки плоских слитков толщиной 200-300 мм, которые в последую­щем прокатывают на лист. В последние годы в связи с не­обходимостью повышения экономичности производства пришли к выводу о целесообразности отливки значительно более тонких заготовок, для прокатки которых требуются менее мощные станы, что значительно снижает энергозатраты и другие издержки. Начата эксплуатация и сооружают новые УНРС для получения слябов толщиной от 30—40 до 70-80 мм.

УНРС для отливки тонких слябов — это в большинстве случаев установки с изгибом слитка, т.е. они имеют верти­кальные кристаллизатор и зону вторичного охлаждения и за ними изгибающий ролик, после которого слиток движется по дуге, попадая в выпрямляющие валки. Далее выпрямленный слиток движется в горизонтальном направлении и его разре­зают на куски мерной длины.

Проблема создания подобных установок связана в основ­ном с трудностью осуществления подвода жидкого металла в кристаллизатор, поскольку диаметр погружного разливочного стакана превышает ширину полости кристаллизатора. Решают эту проблему двумя способами. Одна разновидность УНРС предусматривает применение тонких плоского сечения по­гружных стаканов ("щелевидных" стаканов); в УНРС другого типа применяют "воронкообразные" кристаллизаторы. Такой кристаллизатор имеет в нижней части плоские параллельные широкие стенки, формирующие тонкий плоский слиток, а в середине верхней части имеется воронкообразное расшире­ние, куда входит плоский погружной стакан (см. рис. 181). Формирующаяся в верхней воронкообразной части кристалли­затора оболочка слитка при его вытягивании деформируется и слиток приобретает в нижней части кристаллизатора прямоугольное сечение.

УНРС для отливки тонких слябов подразделяют также на две следующие разновидности: установки, у которых сечение выходящего из кристаллизатора слитка остается неизменным, и установки, у которых слиток с жидкой сердцевиной под­вергают обжатию, уменьшая его толщину.

Кроме того, в Германии разработана конструкция УНРС с вертикально-радиальным кристаллизатором, у которой для


облегчения ввода погружного стакана широкие стенки крис­таллизатора в верхней его части расположены вертикально, а ниже они изогнуты по дуге, формируя изогнутый слиток, движущийся далее по радиальной роликовой проводке с по­следующим выпрямлением и переводом в горизонтальное поло­жение, причем на радиальном участке слиток подвергают об­жатию.

Скорость разливки на УНРС для отливки тонких слябов достигает 4—6,5 м/мин.

Наклонно-криволинейные УНРС

Установки подобного типа разработаны недавно и ведется отработка технологии разливки на таких УНРС и совершенст­вование их отдельных узлов. По устройству такие УНРС схо­жи с криволинейными и отличаются от обычных криволинейных тем, что дугообразный кристаллизатор установлен (см. рис. 166, е) наклонно, т.е. так, что его условная про­дольная ось наклонена на угол 40-45° к горизонтали. После выхода из кристаллизатора движущийся слиток разгибают в нескольких точках, переводя в горизонтальное положение.

Благодаря наклонному расположению кристаллизатора такие УНРС имеют (рис. 166, е) значительно меньшую высо­ту, чем обычные криволинейные и считаются перспективными для установки в существующих сталеплавильных цехах при внедрении непрерывной разливки вместо разливки стали в изложницы.

Основные узлы УНРС

Ниже описаны основные узлы, используемые на широко рас­пространенных УНРС с вытягиванием слитка из кристаллиза­тора.

Промежуточный ковш, обеспечивающий подвод жидкого ме­талла из сталеразливочного ковша в кристаллизатор— это ковш небольшой (менее 1,6 м) высоты с одним, а на много­ручьевых УНРС с несколькими разливочными стаканами, как правило, имеющими стопора; ковш вмеещает от 8—10 до 15 % массы металла в сталеразливочном ковше. Помимо подвода жидкого металла в кристаллизатор промежуточный ковш обес­печивает постоянство условий подачи металла в кристалли­затор в течение всей разливки, т.е. одинаковый и неболь­шой напор струи металла, поступающего в кристаллизатор


(за счет поддержания в ковшв| постоянного уровня металла высотой 0,6—1,2 м); регулирование стопором скорости пода­чи металла в кристаллизатор; подачу металла в несколько кристаллизаторов на многоручьевых УНРС; разливку по мето­ду "плавка на плавку" (запас металла в промежуточном ков­ше позволяет продолжать разливку в периоды, когда опорож­ненный сталеразливочный ковш заменяют новым).

На сортовых УНРС для отливки слитков малого сечения (менее 125x125 мм) иногда применяют промежуточные ковши со стаканами-дозаторами без стопоров. Постоянство уровня металла в кристаллизаторе поддерживают при этом измене­нием скорости вытягивания слитка из кристаллизатора (ско­рости разливки).

Промежуточный ковш по устройству схож с аналогичными ковшами для разливки стали в изложницы (см. рис. 159); в поперечном сечении промежуточные ковши чаще всего имеют форму вытянутого прямоугольника, чтобы обеспечить на мно­горучьевых УНРС подачу металла в несколько кристаллизато­ров, обычно располагаемых в одну линию. Футеровка ковша имеет арматурный слой из шамотного кирпича и рабочий слой из шамотного кирпича или из огнеупорной массы (набивной, наливной, либо нанесенной путем торкретирования). Рабочий слой заменяют после разливки одной—пяти плавок.

Для снижения теплопотерь ковши накрывают футерованными крышками, а до начала разливки футеровку прогревают до температуры 900-1200 °С.

Кристаллизатор является важнейшим конструктивным эле­ментом УНРС; он должен обеспечить быстрое формирование достаточно толстой и прочной корки слитка без дефектов. Для обеспечения этого и предотвращения расплавления само­го кристаллизатора при подаче в него жидкой стали, стенки кристаллизаторов делают водоохлаждаемыми, а внутреннюю их часть, соприкасающуюся с жидким металлом, выполняют из меди. Медь, несмотря на ее легкоплавкость (температура плавления 1083 °С) и невысокую твердость и прочность, применяют потому, что благодаря высокой теплопроводности она быстро передает тепло охлаждающей воде и даже при контакте с жидкой сталью не перегревается и сохраняет прочность.

Применяют кристаллизаторы трех типов: блочные, гильзо­вые и составные. Блочные кристаллизаторы делают из ко-


ваного или литого медного блока, толщина их стенок сос­тавляет 150—175 мм. В стенках блока сверлят продольные отверстия для охлаждающей воды. Гильзовые кристаллизаторы делают из медной гильзы (трубы) с толщиной стенки 6—20 мм, которую закрепляют в наружном стальном кожухе. Охлаждающая вода проходит по узкой (около 5 мм) щели меж­ду медной и стальной стенками со скоростью 6—7,5 м/с. Блочные и гильзовые кристаллизаторы применяют для отливки слитков небольшого сечения (менее 200x200 мм).

Рис. 172. Составной кристаллизатор с петлевой системой охлаждения для от­ливки плоских слитков:

Наибольшее распространение получили составные (сбор­ные) кристаллизаторы, которые выполняют из четырех от­дельных стенок, скрепленных в одно целое с помощью спе­циальных стяжных устройств. Общий вид одной из разновид­ностей подобных кристаллизаторов показан на рис. 172 (кристаллизатор для отливки слитков плоского сечения). Каждая стенка составного кристаллизатора состоит из мед­ной и стальной пластин (плит), скрепленных друг с другом с помощью шпилек. Медная плита обеспечивает быстрый теп-лоотвод, стальная — придает стенке прочность и при боль­ших размерах плиты ее делают литой с ребрами жесткости (рис. 172, 11).


Составные кристаллизаторы подразделяют на тонкостенные и толстостенные. Первые (рис. 173, а) имеют медную плас­тину толщиной 10—20 мм, причем в медной или стальной пластине вырезаны продольные канавки для охлаждающей воды так, что вода в них движется между медной и стальной пластинами. Недостаток таких кристаллизаторов в том, что в результате напряжений, возникающих из-за разности тем­ператур жидкой стали и охлаждающей воды, медные пластины малой толщины сравнительно легко коробятся, что вызывает их усиленный износ вытягиваемым слитком и неравномерное прилегание различных участков стенок кристаллизатора к поверхности слитка. Последнее способствует возникновению поверхностных трещин (продольных, паукообразных и иногда поперечных) и ужимин на слитке. По этой причине применяют в основном толстостенные кристаллизаторы, имеющие медные плиты толщиной 50—100 мм, в которых просверлены (см. рис. 173, б) круглые продольные каналы для охлаждающей воды обычно диаметром 20 мм. Благодаря меньшему коробле­нию толстых медных плит стойкость толстостенных кристал­лизаторов значительно выше, чем тонкостенных и снижается пораженность слитка поверхностными дефектами.

Форма поперечного сечения внутренней полости кристал­лизатора определяется сечением отливаемого слитка. Высоту кристаллизатора выбирают такой, чтобы за время пребывания в нем металла успела сформироваться достаточно прочная (толщиной 10—25 мм) наружная оболочка слитка; эта высота составляет 0,7—1,2 м. Внутреннюю рабочую поверхность сте-


 


1 — стяжной болт; 2 и 3 — ось и сухарь для регулирования положения узкой стенки; 4 — стальная плита; 5 — водоподводящий коллектор; 6 — направление движения воды; 7 — каналы для воды в медных плитах; 8 — каналы для воды в стальных плитах; 9 — медная плита; 10 — слив воды; 11 — ребра жесткости; 12 — опора кристаллизатора на раму механизма качания


Рис. 173. Поперечное сечение составных кристаллизаторов — тонкостенного (а) и толстостенного (ff):

/ — медная плита; 2 — стальная плита; 3 — канавка для воды; 4 — сверленый канал для воды; 5 — шпильки


 




нок кристаллизаторов изготовляют гладкой или волнистой. Волнистая поверхность снижает пораженность слитка продо­льными трещинами.

Из-за малой твердости и прочности меди внутренняя поверхность стенок кристаллизатора сравнительно быстро изнашивается и повреждается в результате трения о по­верхность вытягиваемого слитка. Поэтому составные кри­сталлизаторы после разливки 40—70 плавок разбирают и по­врежденный рабочий слой стенок сострагивают, после чего кристаллизатор собирают и вновь эксплуатируют. Такую опе­рацию повторяют до трех—пяти раз за время службы медной стенки, что позволяет уменьшить расход меди. С целью по­вышения износостойкости все шире применяют покрытие рабо­чей поверхности медных стенок тонким слоем более износо­стойких материалов; в частности, находят применение хро­мовое, никелевое, железоникелевое, железоникельвольфра-мовое и другие покрытия. Покрытия имеют толщину от 0,15 до 1мм, их наносят гальваническим методом, напылением, наплавкой и другими способами. Кроме того, для изготовле­ния стенок кристаллизаторов пробуют применять сплавы на основе меди, обладающие более высокой износостойкостью (сплавы содержащие до 0,1—2,5 % серебра, хрома, кобальта, никеля и др.).

Применяют кристаллизаторы с прямоточной и петлевой системами охлаждения. В первом случае воду подводят от­дельно к каждой из четырех стенок, по каналам которой она движется снизу вверх; после чего уходит на слив. При пет­левой системе, применяемой в кристаллизаторах прямоуголь­ного сечения, вода проходит по каналам стенок дважды; вначале (см. рис. 172) по каналам торцевых стенок и краям широких она движется сверху вниз, а затем по каналам средней части широких стенок — вверх. Петлевая система позволяет снизить расход воды примерно в дна раза.

Подвод и отвод воды к каналам медных стенок осуществ­ляют либо по кольцевым трубам, охватывающим верх и низ кристаллизатора, либо по каналам в стальных плитах (см. рис. 172). Скорость воды в каналах кристаллизатора должна быть не менее 5 м/с, температура отходящей воды не выше 40 °С; расход воды составляет около 90 м3/ч на 1м пери­метра полости кристаллизатора, при прямоточном охлаж­дении.


Конструкция кристаллизаторов непрерывно совершенст­вуется. Так созданы и начали применяться регулируемые кристаллизаторы, позволяющие изменять по ходу разливки ширину отливаемого плоского слитка за счет автоматическо­го перемещения узких стенок между широкими с помощью электромеханического или гидравлического привода. Полу­чают распространение комбинированные УНРС, позволяющие отливать через один кристаллизатор либо плоский слиток большой ширины, либо два слитка меньшей ширины; это дос­тигается за счет установки в кристаллизаторе водоохлажда-емой перегородки, которая разделяет полость кристаллиза­тора на две половины, в каждую из которых подают металл через отдельный разливочный стакан (например, можно отли­вать один слиток плоского сечения шириной 2700 мм или два слитка шириной по 1300 мм).

За рубежом начали применять кристаллизаторы со спрей-ерным (струйным) охлаждением стенок. Такой кристаллизатор представляет собой тонкостенную медную гильзу, закреплен­ную в стальной камере,. внутри которой размещены рядами форсунки, подающие струи воды на всю поверхность медной гильзы.

Механизм качания кристаллизатора обеспечивает в тече­ние всей разливки возвратно-поступательное движение крис­таллизатора вверх-вниз, т.е. вдоль отливаемого слитка, что необходимо для предотвращения отрыва верхней тонкой части корки от движущегося слитка вследствие трения о стенки кристаллизатора. В случае отрыва верхняя часть корки зависает на стенках кристаллизатора, а место разры­ва движется с остальной частью слитка вниз, и после его выхода из кристаллизатора происходит вытекание жидкого металла в зону вторичного охлаждения (прорыв металла под кристаллизатором) с аварийной остановкой разливки. Подоб­ные "зависания" и "прорывы" постоянно наблюдались в годы освоения непрерывной разливки, когда кристаллизаторы устанавливали неподвижно. Положительное воздействие внед­ренного позднее возвратно-поступательного движения объяс­няется следующим: в период совместного движения кристал­лизатора и слитка вниз трение между ними отсутствует и затвердевающая корка слитка утолщается и упрочняется так, что при последующем движении кристаллизатора вверх она не разрывается. В то же время при движении вверх становятся


 




       
   
 
 


доступными для смазки те участки поверхности стенок крис­таллизатора, которые в момент его движения вниз оказыва­ются залитыми жидким металлом; смазка же уменьшает трение и тем самым также снижает возможность разрыва и зависания корки слитка.

Движение кристаллизатора вверх и вниз чаше всего осу­ществляют по синусоидальному закону, величина шага кача­ния изменяется в пределах 3 — 20 мм, частота от 40 до 200-300 циклов в минуту, обычно при увеличении скорости частоту качания увеличивают.

Существует несколько типов механизмов качания кристал­лизаторов. На криволинейных УНРС наибольшее применение получил механизм параллелограммного типа, схематически показанный на рис. 174. Криволинейный кристаллизатор 1 закреплен в раме 2, опирающейся на рычаги 5 и 3 механизма качания. Вращаемый с помощью электродвигателя кривошип 7 обеспечивает перемещение шатуна б по направлению стрелок "А" и тем самым качание рычага 5 вокруг оси 4. Воздейст­вие качающегося рычага в сочетании с рычагом 3 вызывает перемещение рамы с кристаллизатором вверх-вниз по траек­тории дуги с радиусом R. Изменяя число оборотов двигате­ля, регулируют частоту качания кристаллизатора, а изменяя величину радиуса кривошипа — величину амплитуды качания.

Зона вторичного охлаждения представляет собой распо­лагаемую ниже кристаллизатора часть УНРС, где на поверх­ность движущегося слитка подают охлаждающую среду. Как уже отмечалось, в этой зоне от слитка должно отбираться тепло, выделяющееся при кристаллизации жидкого металла, а поверхность слитка не должна охлаждаться ниже 800—1000 °С. Чтобы достичь этого применяют "мягкое" ох­лаждение (распыленной водой, водовоздушной смесью), рас-средотачивая его на большое расстояние по длине слитка (на 70—90 % протяженности жидкой фазы, т.е. металлурги­ческой длины УНРС).

Оборудование зоны вторичного охлаждения состоит из охлаждающих и опорных устройств; обычно эта зона заключе­на в герметичный кожух, необходимый для улавливания пара, образующегося при испарении подаваемой на горячий слиток воды. Охлаждающие устройства при водяной системе охлажде­ния (рис. 175) представляет собой систему трубопроводов с запорными и регулирующими устройствами и многочисленными


Рис. 174. Механизм качания кристаллизатора

Рис. 175. Секция вторичного охлаждения криволинейной УНРС:

1 - слиток; 2 - опорный ролик; 3 — форсунка; 4 — трубчатый коллектор; 5 — задвижка

форсунками, распыливающими подаваемую на слиток воду. В последние годы начали применять водовоздушное охлаждение, т.е. подачу через распыливающие форсунки водовоздушной смеси; в этом случае к форсункам помимо воды подводят сжатый воздух, либо перед форсунками устанавливают смеси­тели воды и воздуха. Это охлаждение по сравнению с водя­ным имеет ряд преимуществ: более тонко распыливается во­да, более равномерно распределяются водяные капли в выхо­дящем из форсунки "факеле" и он орошает большую площадь поверхности слитка, что делает охлаждение более "мягким", снижая неравномерность температур поверхности слитка и пораженность слитка поверхностными трещинами; расширяется диапазон регулирования интенсивности охлаждения за счет возможности изменения соотношения воды и воздуха в смеси; снижается расход воды на вторичное охлаждение.

Форсунки располагают между опорными роликами (рис. 175) или брусьями в один, два, три ряда вдоль нап­равления движения слитка в зависимости от его ширины. При отливке плоских слитков охлаждают широкие грани; у узких граней форсунки устанавливают лишь под кристаллизатором.


Интенсивность охлаждения должна уменьшаться по мере удаления слитка от кристаллизатора. С тем, чтобы обеспе­чить постепенное снижение расхода воды, зону вторичного охлаждения делят по длине на несколько (до восьми) сек­ций, объединяющих группу форсунок и имеющих самостоятель­ный подвод воды. Регулирование расхода воды по секциям в зависимости от скорости разливки, температуры поверхности слитка и иногда других параметров производят автоматичес­ки в соответствии с разработанными для этих случаев режи­мами. Обычно длину секций вторичного охлаждения делают равной длине роликовых секций УНРС.

Опорные устройства системы вторичного охлаждения пред­назначены для предотвращения деформации (выпучивания) тонкой затвердевшей корки слитка под воздействием давле­ния вышележащих слоев жидкой стали, находящейся в цент­ральной, незатвердевшей части слитка. В вертикальных УНРС и установках с изгибом слитка (рис. 168 и 170, а) опорные устройства выполняют в виде системы вращающихся непривод­ных опорных роликов. На некоторых вертикальных УНРС (рис. 168) в верхней части зоны вторичного охлаждения вместо опорных роликов устанавливают более прочную систе­му продольных чугунных брусьев, по которым скользит по­верхность движущегося слитка.

В УНРС с криволинейной осью опорные устройства пред­ставляют собой ролики, образующие роликовую проводку, ^внутри которой движется слиток.

Опорные устройства выполняют так, что расстояние между рядами роликов и брусьев можно изменять; это позволяет быстро перестраивать УНРС при отливке слитков разной толщи­ны. В УНРС криволинейного типа нижний ряд роликов является базовым, а верхний можно перемещать

Тянущие устройства. В вертикальных УНРС это устройство располагают ниже зоны вторичного охлаждения; оно пред­ставляет собой одну-две тянущих клети, каждая из которых включает закрепленные в одной станине две или три (рис. 168) пары валков, соединенных с приводом и прижима­емых к слитку с помощью гидроцилиндров. В УНРС с изгибом слитка имеется два тянущих устройства — тянущая клеть в конце вертикального участка установки и тянуще-правильные ролики, обеспечивающие выпрямление слитка и его дальней­шее перемещение в горизонтальном направлении (рис.170,а).


В слябовых криволинейных и радиальных УНРС движение слитка обеспечивают снабженные приводом (приводные) роли­ки роликовой проводки; последняя обычно выполнена из нес­кольких секций, объединяющих в одном каркасе от двух до семи пар роликов (см. рис. 169). При этом верхняя часть проводки (до 2,5-3,5 м от уровня металла в кристаллизато­ре) является неприводной, а далее следует приводная часть проводки. В ней число приводных роликов в секциях увели­чивается по мере отдаления от кристаллизатора, а на участке перевода движения слитка в движение по горизон­тали все ролики делают приводными. На некоторых радиаль­ных УНРС в месте разгибания слитка имеется правильно-тянущая машина, выделенная в отдельный блок часть привод­ной роликовой проводки.

У сортовых радиальных УНРС в большинстве случаев роли­ковые проводки являются неприводными, а на участке разги­бания слитка располагают тянуще-правильную машину, кото­рая выпрямляет и тянет слиток.

Необходимое усилие прижатия приводных роликов к слитку на разных УНРС, обеспечивают с помощью гидроцилиндров или пружинно-винтовым устройством.

Затравка предназначена для образования временного дна в кристаллизаторе перед началом разливки и для вытягива­ния первых метров отливаемого слитка. На вертикальных и горизонтальных УНРС затравка представляет собой металли­ческую штангу такого же сечения, что и отливаемый слиток. На криволинейных установках применяют гибкие (цепные) за­травки из шарнирно соединенных звеньев; на радиальных УНРС— как цепные, так и жесткие в виде дугообразного бруса по форме сечения одинакового со слитком. Затравки цепного типа могут быть с жесткими звеньями постоянной толщины и звеньями изменяемой толщины (надувные). В на­дувной затравке каждое звено состоит из корпуса и подвиж­ной крышки (пластины), между которыми по всей длине за­травки проложены резинотканевые рукава; при подаче в ру­кава сжатого воздуха крышки приподнимаются и толщина зве­ньев и затравки увеличивается до необходимой величины, определяемой расстоянием между роликами.

Затравка снабжена головкой, в котороой имеется углуб­ление в виде "ласточкиного хвоста" или Г-образной формы (рис. 176); сечение головки затравки соответствует сече-

37-3810


Рис. 176. Затравка в кристаллизаторе перед началом разливки:

а — с головкой, имеющей паз в виде ласточкиного хвоста; б — с Г-образной

головкой; 1 — затравка; 2 — головка затравки; 3 — кристаллизатор

Рис. 177. Повторный стенд УНРС:

1 — опорная станина; 2 — поворотная платформа; 3 — тяга; 4 — подвеска; 5, а и 5, б — сталеразливочный ковш; б — ось крепления консоли; 7 — консоль; 8 — промежуточный ковш; Р — несущая рама тележки; 10 — тележка; 11 — опорные ролики; 12 — рабочая площадка УНРС

нию отливаемого слитка. Перед началом разливки затравку вводят в кристаллизатор и ее головка образует временное дно, а низ затравки находится в тянущих валках. Заливае­мый в кристаллизатор металл застывает в углублении голов­ки, обеспечивая сцепление затравки со слитком. При вклю­чении тянущих валков затравка начинает двигаться вниз и тянет за собой слиток. После выхода затравки из тянущих валков ее отделяют от слитка.

Устройство для резки слитка на куски определенной дли­ны (заготовки) представляет собой газорезку и реже гид­равлические ножницы. Газорезка — это подвижная тележка, снабженная двумя газокислородными резаками, которые при резке перемещаются поперек слитка, а сама газорезка при этом движется вместе со слитком, сцепляясь с ним перед началом резки пневматическими захватами. Иногда синхрони­зацию перемещения газорезки со слитком осуществляют электрорегулирующим устройством. После окончания резки газорезка возвращается в исходное положение, после чего цикл повторяется. Недостатком газовой резки являются по­тери металла, превращающегося в месте резки в окалину.

Оборудование для быстрой смены ковшей. Современные УНРС оборудуют поворотными и иногда передвижными стенда­ми, которые удерживают во время разливки сталеразливочный


ковш над промежуточным и обеспечивают быструю замену ков­шей при разливке методом "плавка на плавку". Поворотный стенд (рис. 177) имеет располагаемую на основании 1 пово­ротную платформу 2, на которую через ось 6 опирается кон­соль 7. В подвесках 4 консоли можно установить два ковша; нертикальное перемещение ковша достигают качанием консо­ли, при этом тяга 3 обеспечивает плоскопараллельное дви­жение подвесок и ковшей. При разливке методом "плавка на плавку" после опорожнения ковша 56 стенд поворачивают на 180°, устанавливая тем самым второй ковш над промежу­точным, и тотчас начинают подачу металла из второго ковша в промежуточный. Разливка во время поворота стенда про­должается за счет расходования металла, имевшегося в про­межуточном ковше.

Для замены промежуточных ковшей в сочетании с поворот­ными стендами применяют тележки, перемещаемые под стендом ПО прямолинейному или кольцевому рельсовому пути. Тележка нторого типа (см. рис. 177) имеет нижние приводные колеса и верхние неприводные 11, опирающиеся на основание пово­ротного стенда. Промежуточный ковш устанавливают на несу­щей раме 9 тележки и для его замены передвигают тележку, подавая на ее место вторую с новым промежуточным ковшом; подачу металла в кристаллизатор при этом прекращают на 1—2 мин.

2. УНРС без скольжения слитка в кристаллизаторе

Работа и устройство УНРС этого типа, как отмечалось ра­нее, основана на том, что рабочая поверхность кристалли­затора перемещается вместе со слитком в начальный момент его формирования; это исключает их взаимное скольжение и возникновение при этом сил трения между слитком и крис­таллизатором. Благодаря отсутствию трения эти УНРС по­зволяют отливать слитки значительно меньшей толщины и при значительно больших скоростях, чем традиционные УНРС с вытягиванием слитка из кристаллизатора.

Опробованы и внедряются либо эксплуатируются несколько разновидностей УНРС этого типа: двухвалковые; барабанные с ограничительным роликом или без него; одно- и двухлен-точные со сплошными или гусеничными лентами (все служат для отливки полос и лент толщиной от 10—20 до долей мил-


лиметра) и барабанно-ленточные или роторные (для отливки слитков с сечением, близким к прямоугольному толщиной до 160 мм).

Сооружение и эксплуатация таких УНРС обходится значи­тельно дешевле, чем традиционных; со скольжением слитка в кристаллизаторе; кроме того снижаются энергозатраты при дальнейшей прокатке, так как для прокатки тонких загото­вок требуются станы небольшой мощности.

Двухвалковые УНРС используют для получения плоских слитков (полос, лент). В таких установках (рис. 178, а) жидкий металл из промежуточного ковша подают сверху в за­зор между двумя параллельными вращающимися навстречу друг другу охлаждаемыми валками (роликами); в торцах валков расположены поперечные пластины (плиты), ограничивающие литейное пространство с боков. Между валками образуется (рис. 178, а) сужающаяся книзу воронка из жидкого метал­ла; в верхней ее части на поверхности валков формируется наружная корочка слитка, которая в дальнейшем подвергает-

8 12 14 12

г

Рис. 178. УНРС без скольжения слитка в кристаллизаторе:

а — двухвалковая; б — барабанного типа без ограничительного ролика; в — ба­рабанного типа с ограничительным роликом; г — двухленточная; 1 — промежу­точный ковш; 2 — охлаждаемый валок; 3 — изгибающее устройство; 4 — направ­ляющие ролики; 5 — слиток; б — выпрямляющие ролики; 7 — охлаждаемый бара­бан; 8 — желоб; 9 — тянущие валки; 10 — снимающий клин; 11 — ограничитель­ный ролик; 12 — опорные ролики; 13 — лента; 14 — охладитель ленты


ся обжатию вследствие сближения поверхностей вращающихся налков. Таким образом, валки выполняют роль кристаллиза­тора и одновременно производят обжатие слитка. После вы­хода из валков слиток с помощью изгибающего устройства 3 и системы роликов плавно переводят в горизонтальное поло­жение.

Жидкий металл в зазор между валками необходимо пода­вать равномерно по ширине отливаемого слитка; подачу ме­талла ведут открытыми струями через желоб или под уровень металла погружными стаканами (плоские стаканы с щелевид-ным выходным отверстием или несколькими круглыми отвер­стиями).

На УНРС подобного типа с диаметром валков 1200 мм при толщине плоского отливаемого слитка 1—5 мм скорость его движения составляет 20—100 м/мин; ширина отливаемого слитка достигает 800 мм. Недостатком таких УНРС являются малое время контакта корочки слитка с валками и возмож­ность образования поверхностных трещин при деформации тонкой формирующейся оболочки слитка.

УНРС барабанного типа служат для отливки полос и лент. В этих установках жидкий металл подают на поверхность вращающегося вокруг горизонтальной оси охлаждаемого бара­бана. Разработано две разновидности таких УНРС: с ограни­чительным роликом (рис. 178, в) и без него (рис 178, б). i рабан диаметром до 1м полый, его рабочая поверхность из стального листа охлаждается водой изнутри, что обеспе­чивает охлаждение нижней поверхности отливаемой полосы; верхнюю наружную поверхность полосы иногда охлаждают во­дой, распыляемой форсунками, либо потоком инертного газа.

Для увеличения протяженности зоньи контакта полосы с барабаном некоторые УНРС помимо ограничительного ролика снабжены опорными роликами 12 (рис. 178, в). Отливаемая полоса отделяется от барабана с помощью снимающего клина. После отделения от барабана полоса попадает в тянущие ро­лики и затем на моталку, сматывающую полосу в рулон.

Жидкий металл подают как на восходящую, так и нисходя­щую поверхность вращающегося барабана; при этом должно обеспечиваться его равномерное поступление по всей ширине барабана. На установках без ограничительного ролика тол­щина отливаемой ленты (полосы) определяется скоростью вращения барабана и количеством подаваемого на поверх-


ность барабана расплава. При этом для получения постоян­ной толщины ленты необходимы стабильность свойств распла­ва (температура, жидкотекучесть и др.) и надежные системы автоматического контроля и управления разливкой. Более перспективными считаются установки с ограничительным ро­ликом, у кооторых постоянство толщины и гладкая поверх­ность ленты обеспечиваются за счет воздействия этого ро­лика. Толщина отливаемых полос и лент составляет от 20 до долей миллиметра, ширина достигает 1000 мм, скорость раз­ливки 10—бОм/мин и более.

Ленточные УНРС, служащие для отливки тонких полос, мо­гут быть одно- и двухленточными. Двухленточная установка (рис. 178, г) имеет две располагаемые наклонно параллель­ные бесконечные ленты, движущиеся с одинаковой скоростью. Ленты могут быть гусеничными или сплошными из стали. С внутренней стороны ленты охлаждаются водой; прижатие лен­ты к отливаемой полосе обеспечивают опорные ролики 12. Продольное расширение ленты вследствие ее нагрева компен­сируют натягивающими роликами.

Металл в зазор между лентами подают либо через желоб, либо плоскими погружными стаканами.

На одной из подобных установок со сплошными лентами (установка "Хезелетт" в США) отливают полосы толщиной 20— 80 мм при скорости разливки от 4—6 до 15 м/мин.

Роторные или барабанно-ленточные УНРС применяют, как правило, для отливки слитков трапециевидного (близкого к прямоугольному) сечения. Одна из таких УНРС, входящая в состав литейно-прокатного агрегата, показана на рис. 179. Жидкий металл поступает из промежуточного ковша сверху в зазор между вращающимся литейным колесом и движущейся лентой. Литейное колесо 7 диаметром 3 м из стали имеет закрепленный на ободе медный водоохлаждаемый канал, имею­щий форму расширяющейся кверху трапеции, что облегчает выход слитка из канала в процессе разливки (размеры сече­ния канала 160x130x128 мм). Бесконечная стальная лента толщиной 1,6 мм прижимается к ободу колеса двумя валками 4, а третий приводной валок 3 обеспечивает ее натяжение и непрерывное движение. Движущаяся лента прижимается к обо­ду колеса, образуя кристаллизатор длиной 1,8 м, в котором отсутствует скольжение слитка. В зоне контакта с колесом ленту снаружи охлаждают.


Рис. 179. Литейно-прокатный агрегат с роторной УНРС: I — сталсразливочный ковш; 2 — промежуточный ковш; 3 — приводной валок; 4 -прижимные валки; 5 — охлаждение ленты; 6 — направляющие ролики; 7 — литей­ное колесо; 8 — снимающий клин; 9 — тянущие ролики; 10 — печь для выравни­вания температуры слитка; 11 — ножницы; 12 — вертикальная прокатная клеть; 13 — горизонтальная прокатная клеть

В нижней части колеса слиток выводят из трапециевидного канала и плавно разгибают с помощью водоохлаждаемого кли­на и ряда роликов, после чего он поступает в тянущую клеть. Скорость разливки (скорость движения слитка) на таких УНРС достигает 4-6 м/мин. 3. Литейно-прокатные агрегаты

Совмещение непрерывной разливки с прокаткой, т.е. прокат­ка горячего слитка после выхода из УНРС, позволяет исклю­чить операцию нагрева металла перед прокаткой и, тем са­мым, заметно снизить уровень энергозатрат. Поэтому в те­чение многих лет ведутся работы по созданию литейно-ирокатных агрегатов (ЛПА), объединяющих УНРС и прокатный стан. Основная трудность при этом связана с тем, что ско­рость движения слитка на высокопроизводительных УНРС со скольжением слитка в кристаллизаторе в несколько раз ниже скорости движения прокатываемой заготовки на прокатных станах. Сочетание УНРС с прокатным станом облегчается при разливке стали на начинающих применяться в последние годы установках без скольжения слитка в кристаллизаторе, обес­печивающих значительно большие скорости разливки, чем традиционные УНРС.



 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.