Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Примеры евклидовых пространств



Евклидовы пространства

Понятие евклидова линейного пространства.

Примеры евклидовых пространств

Пусть задано линейное пространство. Возникает вопрос: можно ли измерять расстояние между элементами (векторами) этого пространства, находить углы между векторами и длины (модули) этих векторов. Ответы на этот вопрос дает понятие евклидова линейного пространства.

Определение 3.1.Если в линейном пространстве любым двум элементам можно поставить в соответствие действительное число , называемое скалярным произведением векторов и удовлетворяющее аксиомам:

,

, ,

, ,

, причем ,

то это пространство называется евклидовым пространством.

Число называется скалярным квадратом вектора .

Аксиома определяет симметричность скалярного произведения, аксиомы – аддитивность и однородность по первому множителю, неотрицательность скалярного квадрата.

Поскольку евклидово пространство является линейным, то на него переносятся все понятия, определенные для линейного пространства. В частности, можно ввести понятие базиса и размерности евклидова пространства. Сформулируем простейшие следствия из аксиом евклидова пространства:

1) , ,

2) ,

3) .

Теорема 3.1. В евклидовом пространстве для любых двух векторов справедливо неравенство Коши-Буняковского:

. (3.1)

□ Отбрасывая тривиальный случай, когда один из векторов нулевой (в этом случае неравенство (3.1) выполняется), предположим, что . Рассмотрим при произвольном числе вектор и найдем его скалярный квадрат

.

Преобразовав скалярное произведение согласно аксиомам, получим

.

Левую часть полученного неравенства можно рассматривать как квадратный трехчлен относительно ( ), принимающий неотрицательные значения при каждом . Тогда его дискриминант должен быть неположительным, то есть

,

откуда и следует неравенство (3.1). ■

В данном пункте приведены примеры наиболее часто встречающихся евклидовых пространств. Заметим, что в одном и том же линейном пространстве скалярное произведение можно ввести различными способами. Рассмотрим различные способы задания скалярного произведения в двух линейных пространствах и .

Рассмотрим линейное пространство . Его элементами являются вектор-столбцы . Скалярное произведение в нем можно задать двумя способами.

Первый способ (задание скалярного произведения стандартным образом):

.

Покажем, что при таком задании скалярного произведения в выполняются аксиомы евклидова пространства. Действительно, при всех , имеем:

,

,

,

, причем .

Второй способ (задание скалярного произведения в виде симметрической билинейной формы):

,

где симметрическая ( , ) положительно определенная матрица -го порядка.

Замечание 3.1.Доказательство того факта, что скалярное произведение, заданное в виде симметрической билинейной формы, удовлетворяет всем аксиомам евклидова пространства, можно посмотреть в п. 6.7.

Замечание 3.2.Так и являются подпространствами евклидова пространства , то скалярное произведение в них можно ввести двумя выше описанными способами.

Рассмотрим линейное пространство . Его элементами являются многочлены относительно переменной степеней, не превосходящих натуральное число :

, .

Первый способ задания скалярного произведения:

.

Второй способ задания скалярного произведения:

где попарно различные действительные числа.

Можно показать, что в каждом случае выполняются все аксиомы евклидова пространства.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.