Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Представление числа в прямом коде



При записи числа в прямом коде старший разряд является знаковым разрядом. Если его значение равно 0 — то число положительное, если 1 — то отрицательное. В остальных разрядах (которые называются цифровыми разрядами) записывается двоичное представление модуля числа.

Функция кодирования двоичных чисел (в том числе целых чисел и смешанных дробей) в прямом коде имеет вид:

где n — номер знакового разряда. В частности, при кодировании правильных двоичных дробей (то есть чисел − 1 < A < 1), n = 0 и функция кодирования принимает вид:

Величина числа A в прямом коде определяется по следующей формуле:

где:

§ asign — значение знакового разряда;

§ число A имеет k разрядов справа от запятой (дробная часть) и n разрядов слева (целая часть), тут учитываются только цифровые разряды.

Как видно из последней формулы, знаковый разряд в прямом коде не имеет разрядного веса. При выполнении арифметических операций это приводит к необходимости отдельной обработки знакового разряда в прямом коде.

 

Обратный код — метод вычислительной математики, позволяющий вычесть одно число из другого, используя только операцию сложения над натуральными числами. Ранее метод использовался в механических калькуляторах (арифмометрах). В настоящее время используется в основном в современных компьютерах.

 

Обратный n-разрядный двоичный код положительного целого числа состоит из одноразрядного кода знака (двоичной цифры 0), за которым следует n − 1-разрядное двоичное представление модуля числа (обратный код положительного числа совпадает с прямым кодом).

Пример. Двоичное представление числа 5 есть 101. Обратный 10-разрядный двоичный код числа +5 есть 0000000101.

Обратный n-разрядный двоичный код отрицательного целого числа состоит из одноразрядного кода знака (двоичной цифры 1), за которым следует n − 1-разрядное двоичное число, представляющее собой инвертированное n − 1-разрядное представление модуля числа.

Пример. Двоичное представление числа 5 есть 101, его 10-разрядное двоичное представление — 0000000101. Обратный 10-разрядный двоичный код числа −5 есть 1111111010.

Имеются два обратных кода числа 0: «положительный нуль» 0000000000 и «отрицательный нуль» 1111111111 (приведены 10-разрядные обратные коды).

n-разрядный обратный код позволяет представить числа от − 2n − 1 + 1 до + 2n − 1 − 1.

 

Двоичный пример

Метод дополнений в основном используется в двоичной системе счисления (с основанием 210), так как в двоичной системе счисления дополнение до 1 очень просто получается инверсией каждого бита (заменой '0' на '1' и наоборот) и добавлением единицы, дополнение до 2 может быть сделано симуляцией единицы переноса в младший значащий бит.[1] Например:
вычитание 10010 — 2210

011001002 (x, равное десятичным 10010)- 000101102 (y, равное десятичным 2210)

в методе дополнений становится суммой:

011001002 (x)+ 111010012 (первое дополнение y)+ 12 (чтобы получить второе дополнение)========== 1010011102

После отброса левой (старшей, начальной) «1» получается ответ: 010011102 (равное десятичным 7810).

 

Дополнительный код (англ. two’s complement, иногда twos-complement) — наиболее распространённый способ представления отрицательных целых чисел в компьютерах. Он позволяет заменить операцию вычитания на операцию сложения и сделать операции сложения и вычитания одинаковыми для знаковых и беззнаковых чисел, чем упрощает архитектуру ЭВМ. Дополнительный код отрицательного числа можно получить инвертированием модуля двоичного числа (первое дополнение) и прибавлением к инверсии единицы (второе дополнение). Либо вычитанием числа из нуля.

Дополнительный код (дополнение до 2) двоичного числа получается добавлением 1 к младшему значащему разряду его дополнения до 1. [1]

Дополнение до 2 двоичного числа определяется как величина полученная вычитанием числа из наибольшей степени двух (из 2N для N-битного дополнения до 2).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.