Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Требования к точности поверхностей вала и отверстия, сопряженных с подшипниками



Чем выше требования к точности опор на подшипниках качения и выше класс точности подшипников, тем жестче требования к точности формы сопрягаемых с подшипником поверхностей. Нормируются отклонения от круглости(отклонение формы в плоскости, перпендикулярной оси), и отклонение профиля продольного сечения(отклонение профиля в плоскости проходящей через ось).

Учитывая сложности измерения и другие факторы для разных случаев применения подшипников, разработчики стандарта (ГОСТ 3325-85) для отклонений формы ввели новый параметр -непостоянство посадочного диаметра подшипника отдельно в продольном и поперечном сечениях. В таблицах стандарта устанавливаются требования, как по комплексным показателям, так и по непостоянству диаметров в сечениях. Допуски по непостоянству диаметра зависят от допуска на размер посадочного элемента. Так, для подшипников класса 0 и 6 допуск на непостоянство диаметра принят равным половине допуска на размер, для подшипников классов 5 и 4 - 30% от допуска на размер, а для подшипников класса 2 - 25% от допуска на размер. В стандарте эти значения приведены с соответствующим округлениями.

Для посадочных отверстий под подшипники 0 класса в чугунных корпусах, а также для валов и отверстий из любого материала для легко нагруженных подшипников разрешается нормировать допуск на непостоянство диаметров в поперечном и продольном направлениях равным 75% от допуска на размер.

Шероховатость посадочных поверхностей, сопрягаемых с кольцами подшипника деталей, зависит от диаметра и класса точности подшипника. Соответствующие значения параметров Rа для посадочных поверхностей валов, отверстий и торцов заплечиков валов и корпусов представлены в табл.


Штифтовые соединения. Виды соединений, посадки штифтов.

Штифтовые соединения применяют для крепления деталей (соединение вала со втулкой) или для взаимного ориентирования деталей, которые крепят друг к другу винтами или болтами (соединение крышки и корпуса, соединение стойки и основания и др.).

При ориентировании деталей относительно друг друга (соединение крышки и корпуса) обычно используют два штифта, но для фиксации углового положения деталей, ориентирование которых обеспечивается цилиндрическим сопряжением (например, соединение круглой крышки с корпусом) достаточно одного фиксирующего штифта.

Виды соединений.

Штифтовые соединения вала со втулкой относятся к разъемным неподвижным соединениям, в которых дополнительный конструктивный элемент (штифт) обеспечивает взаимную неподвижность деталей. В этом соединении штифт фиксирует детали в осевом и тангенциальном направлениях (предотвращает как осевой сдвиг, так и взаимный поворот). В отличие от неразъемных соединений вала и втулки с натягом, штифтовые соединения позволяют осуществлять разборку и повторную сборку конструкции с обеспечением того же эффекта, что и при первичной сборке. В штифтовом соединении вала с ответной деталью штифт обычно используется для передачи крутящего момента (в соединениях вращающегося вала с зубчатым колесом или со шкивом), но возможны и другие решения, например – защита вала от проворота относительно неподвижного корпуса.

Штифтовое соединение крышки и корпуса образует две посадки: штифт-отверстие корпуса и штифт-отверстие крышки, а в штифтовом соединении вала с зубчатым колесом следует различать центрирующее сопряжение вал-отверстие зубчатого колеса и две собственно штифтовые посадки: штифт-отверстия (два) во втулке зубчатого колеса и штифт-отверстие вала.

Точность центрирования деталей в штифтовом соединении вала с зубчатым колесом (шкивом, ступицей рычага и др.) обеспечивается посадкой колеса на вал. Это обычное центрирующее гладкое цилиндрическое сопряжение, для которого можно выбрать посадку с очень малыми зазорами или натягами, следовательно, предпочтительны переходные посадки.

Поскольку поле допуска на диаметр штифта одинаково по всей длине, собственно штифтовые посадки являются посадками в системе вала. Если выбрано основное отклонение поля допуска штифта h (например, ∅4 h8), посадки реализуются в системе основного вала. А если выбрать иное стандартное основное отклонение поля допуска штифта (например, m), собственно штифтовые посадки реализуются в системе неосновного вала, например, ∅4 F8/m6 и ∅4 K7/m6.

Стандарты предусматривают ряд конструкций штифтов, в том числе конические, цилиндрические с гладкими поверхностями, с лысками и насечками (для установки в глухие отверстия), трубчатые, в том числе с продольными разрезами. Дополнительными конструктивными элементами штифтов могут быть резьбовые отверстия для извлечения из штифтов глухих отверстий или резьбовые выступы, глухие цилиндрические отверстия (для облегчения расклепывания концов). Для некоторых типов конических штифтов предусмотрен продольный разрез (шлиц) со стороны меньшего основания конуса примерно на (15…30) % общей длины для стопорения штифта пластическим деформированием (разжатием). Штифты обычно изготавливают из стали 45, хотя в некоторых случаях допускается изготовление из сталей А12, 10кп и 20кп. Для последующей закалки до твердости (54…62) HRCэ штифты могут изготавливать из качественных конструкционных сталей.

Посадки штифтов.

Стандартами регламентируются номинальные размеры штифтов и поля допусков их основных размеров, что позволяет назначать необходимые типовые посадки штифтов в отверстия корпусов, крышек, втулок и валов.

Гладкие цилиндрические штифты изготавливают с полями допусков на основную поверхность m6, h8, h9, h11, на длину штифта – по h14, на диаметр глухого отверстия – по Н13, на его глубину – по IT15. Поля допусков резьбовых отверстий штифтов – по 7Н. Конические штифты изготавливают с конусностью 1:50, с полями допусков на угловой размер ± АТ8/2 или ± АТ10/2 и с полем допуска на диаметр по h10 или по h11.

Штифтовые соединения крышки и корпуса представляют достаточно сложную задачу, связанную с составлением и решением взаимосвязанных размерных цепей. Каждое собственно штифтовое сопряжение включает в себя две простейших размерных цепи (посадка штифта в отверстие корпуса и посадка штифта в отверстие крышки. Образовавшиеся замыкающие звенья – зазоры (натяги) будут входить как составляющие звенья в размерные цепи, определяющие межосевые размеры штифтового соединения, а также их замыкающие звенья – зазоры (натяги) между образующими штифтов и корпусной детали (крышки).

Кроме намеченных линейных размерных цепей, следует также составить и рассчитать еще и угловые размерные цепи, поскольку отклонения осей штифтовых отверстий от перпендикулярности также существенно влияет на собираемость изделия.

В связи с тем, что обеспечить точность замыкающих звеньев таких размерных цепей методами полной взаимозаменяемости бывает затруднительно, достаточно часто прибегают к «технологической компенсации» – применяют совместную окончательную обработку штифтовых отверстий в сборе. Корпус и крышку с предварительно просверленными отверстиями собирают без штифтов и крепят друг к другу, затем «совпадающие» отверстия обрабатывают разверткой, чем обеспечивается их соосное расположение при фиксированном межосевом расстоянии. Такой технологический процесс можно рассматривать как применение технологии в индивидуального производства, поскольку каждая крышка подходит только к своему корпусу.





©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.