Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Современные методы генетики



Совокуп­ность методов исследования наследственных свойств организма (его генотипа) называется генетический анализ.

В зависимости от за­дачи и особенностей изучаемого объекта генетический анализ проводят на популяционном, организменном, клеточном и молекулярном уровнях.

 

Основу генетического анализа составляет гибридологический анализ, основанный на анализе наследования признаков при скрещиваниях.

Гибридологический анализ, основы которого разработал основатель современной генетики Г. Мендель, основан на следующих принципах.

1. Использование в качестве исходных особей (родителей), форм, не дающих расщепления при скрещивании, т.е. константных форм.

2. Анализ наследования отдельных пар альтернативных признаков, то есть признаков, представленных двумя взаимоисключающими вариантами.

3. Количественный учет форм, выщепляющихся в ходе последовательных скрещиваний и использование математических методов при обработке результатов.

4. Индивидуальный анализ потомства от каждой родительской особи.

5. На основании результатов скрещивания составляется и анализируется схема скрещиваний.

Гибридологическому анализу обычно предшествует селекционный метод. С его помощью осуществляют подбор или создание исходного материала, подвергающегося дальнейшему анализу (например, Г. Мендель, который по существу является основопо­ложником генетического анализа, начинал свою работу с получения константных – гомозиготных – форм гороха путём самоопыле­ния);

Однако в некоторых случаях метод прямого гибридологического анализа оказывается неприменим. Например, при изучении наследования признаков у человека необходимо учитывать ряд обстоятельств: невозможность планирования скрещиваний, низкая плодовитость, длительный период полового созревания. Поэтому кроме гибридологического анализа, в генетике используется множество других методов.

 

Цитогенетические методы.

Цитогенетика– это раздел генетики, изучающий видимые носители генетической информации: митотические, мейотические и политенные хромосомы, интерфазные ядра, в меньшей степени – митохондрии и пластиды. Следовательно, цитогенетические методы – это, в первую очередь, методы изучения хромосом: подсчет их числа, описание структуры, поведения при делении клетки, а также связь между изменением структуры хромосом с изменчивостью признаков.

Цитогенетические методы заключаются в цитологическом анализе ге­нетических структур и явлений на основе гибридологического анализа с целью сопостав­ления генетических явлений со структурой и поведением хромосом и их участков (анализ хромосомных и геномных мута­ций, построение цитологических карт хромо­сом, цитохимическое изучение активности ге­нов и т. п.). Частные случаи цитогенетического метода – кариологический, кариотипический, геномный анализ.

Для изучения структуры хромосом и других носителей наследственной информации используются методы световой микроскопии и методы электронной микроскопии.

 

Популяционные методы. На основе популяционного метода изучают генетическую структуру популяций различных организмов: количественно оцени­вают распределение особей разных гено­типов в популяции, анализируют дина­мику генетической структуры популяций под действием различных факторов (при этом ис­пользуют создание модельных популя­ций). Подробнее популяционные методы описаны в соответствующей лекции.

 

Молекулярно-генетические – биохимические и физико-химические – методы включают разнообразные, направленные на изучение структуры и функции генетического материала и направлен на выяснение этапов пути «ген – при­знак» и механизмов взаимодействия различных молекул на этом пути.

 

Мутацион­ные методы позволяет (на основе всестороннего анализа мутаций) устано­вить особенности, закономерности и меха­низмы мутагенеза, помогает в изучении структуры и функции генов. Особое зна­чение мутационный метод приобретает при ра­боте с организмами, размножающимися бесполым путём, и в генетике человека, где возможности гибридологического анализа крайне затруднены. Подробнее мутационные методы описаны в соответствующей лекции.

 

Генеалогический метод (метод анализа родословных). Позволяет проследить наследование признаков в семьях. Используется для определения наследственного или ненаследственного характера признака, доминантности или рецессивности, кар­тирования хромосом, т. е. для установления принадлежности гена, кодирующего данный признак, к определенной группе сцепления, сцепленности с Х- или Y-хромосомами, для изучения мутационного процесса, особенно в случаях, когда необходимо отличить вновь возникшие мутации от тех, которые носят семейный характер, т. е. возникли в предыдущих поколениях. Как правило, генеалогический метод составляет основу для заключений при медико-генетическом консультировании (если речь не идет о хро­мосомных болезнях). Подробнее генеалогический метод описан в соответствующей лекции.

 

Близнецовый метод, заключающийся в анализе и сравнении изменчивости признаков в пре­делах различных групп близнецов, позволяет оценить относит, роль генотипа и внешних условий в наблюдаемой изменчивости. Особенно важен этот метод при работе с малоплодовитыми организмами, имею­щими поздние сроки наступления половой зрелости (например, крупный рогатый скот), а так­же в генетике человека. Подробнее близнецовый метод описан в соответствующей лекции.

 

Методы биотехнологиивключают методы клеточной инженерии, а также методы генной инженерии, описанные в соответствующей лекции.

 

В генетическом анализе исполь­зуют и многие другие методы:

онтогенетический,

Иммуногенетический,

сравнительно-морфологические и сравнительно-биохимические методы,

разнообразные математические методы и т. д.

 

Закон Моргана

Отклонение от независимого распределения признаков при наследовании означает, что гены, локализованные в одной хромосоме, наследуются совместно, или сцепленно (закон Т. Моргана). Группы генов, расположенных в одной хромосоме, составляют группу сцепления. Сцепленные гены расположены в хромосомах в линейном порядке. Число групп сцепления соответствует числу пар хромосом, т.е. гаплоидному набору. Так, у человека 46 хромосом - 23 группы сцепления, у дрозофилы 8 хромосом - 4 группы сцепления.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.