Для качественного ведения любого технологического процесса необходим контроль за несколькими характерными величинами, называемыми параметрами процесса.
В системах теплогазоснабжения и кондиционирования микроклимата основными параметрами являются температура, потоки теплоты (общие, радиационные и др.), влажность, давление, расход, уровень жидкости и некоторые другие.
В результате контроля необходимо установить, удовлетворяет ли фактическое состояние (свойство) объекта контроля заданным технологическим требованиям. Наблюдение за параметрами систем осуществляется с помощью измерительных приборов.
Суть измерения - получения количественной информации о параметрах путем сравнения текущего значения технологического параметра с некоторым, его значением, принятым за единицу. Результатом контроля является представление о качественных характеристиках контролируемых объектов.
Совокупность устройств, с помощью которых выполняются операции автоматического контроля, называется системой автоматического контроля (САК).
В современных САК измерительная информация от приборов часто поступает непосредственно в автоматические управляющие устройства.
В этих условиях в основном используются электрические средства измерений, отличающиеся следующими преимуществами:
1) - простота изменения чувствительности в широком диапазоне измеряемой величины;
2) - малая инерционность электрической аппаратуры или широкий частотный диапазон, что позволяет измерять как медленно, так и быстро изменяющиеся во времени величины;
3) - возможность измерения на расстоянии, в недоступных местах, централизация и одновременность измерения многочисленных и различных по своей природе величин;
4) - возможность комплектования измерительных и обслуживаемых ими автоматических систем из блоков однотипной электрической аппаратуры, что имеет важнейшее значение для создания ИИС (измерительно-информационные системы) [5, с. 29].
Метод измерений — т.е. совокупность отдельных измерительных преобразований, необходимых для восприятия информации о размере измеряемой величины и преобразования ее в такую форму, которая необходима получателю информации, наиболее наглядно можно изобразить в виде функциональной схемы (рис. 4).
Рисунок 4. - Функциональная схема метода измерения
Измерительный прибор конструктивно чаще всего разделяют на три самостоятельных узла: датчик, измерительное устройство и указатель (или регистратор), которые могут размещаться отдельно друг от друга и соединяться между собой кабелем или другой линией связи.
Датчик прибора для измерения той или иной, величины представляет собой конструктивную совокупность нескольких измерительных преобразователей, размещаемых непосредственно у объекта измерения. Используя дистанционную передачу, остальную часть измерительной аппаратуры (измерительные цепи, усилитель, источники питания и т.д.) называемую обычно измерительным устройством, выполняют в виде самостоятельного конструктивного узла, который может быть размещен в более благоприятных условиях. Требования к последней части измерительного прибора, т.е. к его указателю (регистратору) определяются удобством использования полученной информации.
В САК датчик называют первичным прибором. Он соединяется линией связи с вторичным прибором, объединяющим измерительное устройство и указатель. Один и тот же вторичный прибор может использоваться для контроля нескольких величин (параметров). В более общем случае к одному вторичному прибору подключаются несколько первичных преобразователей - датчиков.
Методы измерительных преобразований разделяются на два основных, принципиально отличающихся класса: метод прямого преобразования и метод уравновешивающего преобразования.
Метод прямого преобразования характеризуется тем, что все преобразования информации производятся только в одном, прямом направлении - от входной величины X через ряд измерительных преобразователей П1, П2 ... к выходной величине Увых: метод отличается сравнительно низкой точностью (рис. 5, а).
В методе уравновешивания используются две цепи преобразователей: цепь прямого преобразования П1, П2 ..., ... и цепь обратного преобразования, состоящая из преобразователя β.
Рисунок. 5 - Метод уравновешивания
Вторичные приборы в соответствии с примененным в них методом измерения подразделяются на приборы прямого преобразования и приборы уравновешивания. По методу прямого преобразования построен прибор для измерения температуры с помощью термопары и милливольтметра, - логометр - магнитно-электрический прибор постоянного тока с элект-рическим противодействующим моментом (рис. 6, а, б).
Рисунок 6. - Схема измерения температуры с помощью термопары и милливольтметра (а) и схема логометра (б).
Основное достоинство логометра - независимость показаний прибора от величины питающего напряжения Е.
В системах ТГС и СКМ широко применяются приборы уравновешивания с мостовыми равновесными и компенсационными измерительными схемами.
В качестве вторичного прибора используется мост с автоматическим процессом уравновешивания - автоматический мост.
В ТГС и СКМ автоматические мосты применяются для измерения температуры, а также расхода вещества, давления, уровня жидкости, влажности и многих других неэлектрических величин.
В качестве вторичных приборов широко применяются также автоматические потенциометры. Автоматические потенциометры применяют для измерения электрических и неэлектрических величин, которые могут быть предварительно преобразованы в напряжение или ЭДС постоянного тока.
В качестве вторичных приборов в системах ТГС и СКМ находят широкое применение автоматические дифференциально-трансформаторные приборы. Они применяются для измерения неэлектрических величин - давления, расхода уровня, напора и т.п. (модификации КПД, КВД, КСД).
По устройству и назначению вторичные приборы делятся на две группы:
а) - показывающие, дающие информацию о мгновенном значении измеряемого параметра.
б) - показывающие и самопишущие, осуществляющие мгновенное измерение и фиксирующие величину измеряемого параметра на диаграммной бумаге.