Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Процесс горения с позиций молекулярно-кинетической теории газов



Рис. 2.1. Доля активных молекул в зависимости от температуры: Т21

 

При нагревании газовой горючей смеси в ней увеличивается избыточная энергия.

Разность между средним уровнем запаса энергии молекул в активном состоянии и средним уровнем неактивном состоянии, называется энергией активации. Это можно представить графически (рис. 2).

Рис. 2.2. Энергетическая диаграмма хода реакции Г.В. + О. ® П.Г.: Еакт – энергия активации; Qх.р – тепловой эффект реакции горения

 

Энергия, выделившаяся в результате взаимодействия «первых» прореагировавших молекул передается соседним молекулам. Они возбуждаются, процесс повторяется вокруг прореагировавших молекул с большой частотой и интенсивностью. Начинается самоподдерживающийся, самоускоряющийся на всю реакционную смесь (2Н2 + О2) процесс химического взаимодействия, сопровождающийся образованием молекул воды и выделением в окружающую среду тепла и сопровождающийся свечением, т.е. возникает и распространяется процесс горения.

Чем выше численное значение Еакт, тем труднее заставить данную пару компонентов вступить в химическое взаимодействие. Поэтому величина Еакт является косвенным показателем степени пожарной опасности данной химической системы.

Виды и режимы горения

Горение можно классифицировать по следующим параметрам:

1. По условию смесеобразования горючих компонентов:

а) кинетическое – горение предварительно перемешанных газо- или паровоздушных смесей. Так как смесь горючего и окислителя готова к горению до момента ее воспламенения, то суммарная скорость процесса горения зависит только от скорости химической реакции горения. Если такое горение будет происходить в замкнутом или ограниченном объеме, то тогда может произойти взрыв. Так как энергия, выделяющаяся при сгорании смеси, не успевает отводиться за пределы данного объема, за счет увеличения давления возможно разрушение конструкций;

б) диффузионное, диффузионным горением называется горение, когда образование горючей среды (смешение горючего и окислителя) происходит перед зоной горения или в зоне горения.

2. По интенсивности поступления горючих компонентов в зону химической реакции:

а) ламинарное, при этом компоненты горючей смеси поступают в зону горения сравнительно спокойно. При этом численное значение критерия Рейнольдса, который характеризует термодинамический режим, будет значительно меньше критического (Re<2300).

б) турбулентное, при этом компоненты горючей смеси поступают в зону горения с большой скоростью. Число Рейнольдса в этом случае больше 2300.

3. По агрегатному состоянию компонентов горючей смеси:

а) гомогенное  горючее и окислитель находятся в одинаковом агрегатном состоянии (газообразном);

б) гетерогенное (разнофазное) - горючее и окислитель находятся в различных агрегатных состояниях.

4. По скорости распространения зоны химической реакции горения:

а) дефлаграционное (медленное) распространение зоны химической реакции (скорость от 0,5 до 50 м/с);

б) детонационное (взрывное), когда зона химической реакции горения распространяется со скоростью ударной волны (от нескольких сотен метров в секунду до нескольких километров в секунду).

Пространство, в котором сгорают пары или газы, называется пламенем.

Ламинарные пламена предварительно перемешанной смеси. В ламинарных пламенах предварительно перемешанной смеси горючее и окислитель смешиваются до начала горения и поток ламинарен.

Пламя предварительно перемешанной смеси называют стехиометрическим, если горючее (углеводород) и окислитель (кислород — О2) расходуют друг друга полностью, образуя двуокись углерода (СО2) и воду (Н2О). Если существует избыток горючего, говорят, что смесь богатая, а в случае избытка окислителя говорят, что смесь бедная.

Рассмотрим простейшие примеры:

1) 2Н2 + O2 → 2Н2О — стехиометрическая смесь,

2) ЗН2 + О2 → 2H2O + Н2 — богатая смесь (Н2 в избытке),

3) СН4 + ЗО2 → 2Н2О + СО2 + О2 - бедная смесь (О2 в избытке).

Каждый символ в таком уравнении химической реакции соответствует одному молю вещества. Так, первое из этих уравнений означает, что два моля Н2 реагируют с одним молем О2 с образованием двух молей Н2О.

Если уравнение химической реакции записано таким образом, что оно описывает реакцию именно одного моля горючего, то мольная доля горючего в стехиометрической смеси может быть легко определена из соотношения

хгор,стех = 1/ ((1+v)

Здесь v обозначает число молей О2 в уравнении реакции с образованием СО2 и Н2О. Примером служит реакция

H2+0,5O2→H2O, v=0,5, xH2,стех = 2/3

Если окислителем является воздух, то следует принимать во внимание, что сухой воздух содержит только 21 % кислорода, а также 78 % азота и 1 % благородных газов. Таким образом, для воздуха XN2 = 3,762 XO2. Отсюда мольные доли для стехиометрической смеси с воздухом будут равны

хгор,стех = 1/ ((1+v∙4,762), ,

где v как и прежде означает количество молей О2 в уравнении реакции полного превращения одного моля горючего в СО2 и Н2О. Ряд примеров значений v и мольных долей горючего для стехиометрических смесей горючего с воздухом приведен в таблице 1.

Предварительно перемешанные смеси горючего и воздуха (в этом случае в уравнение реакции должно быть добавлено соответствующее количество N2, см. табл. 1) характеризуются величиной эквивалентного отношения для воздуха:

λ = (хвозгор) / (хвоз,стех / хгор,стех) = (wвоз/wгор) / (wвоз,стех / wгор,стех)

либо обратной величиной — эквивалентным отношением для горючего Ф (Ф = 1/λ). Эту формулу можно преобразовать для того, чтобы можно было определить величины мольных долей смеси по значению Ф:

хгор = 1/ ((1+(4,762∙v) / Ф), хвоз = 1 – хгор ,

= хвоз / 4,762, = ∙3,762

Примеры значений v и мольных долей горючего xгор, стех для стехиометрических смесей горючего с воздухом

 

Реакция v x
H2 + 0,5O2 + 0,5∙3,762N2→H2O + 0,5∙3,762N2 0,5 29,6 моль-%
CH4+2,0O2+2,0∙3,762N2 → CO2 +2H2O+2,0∙3,762N2 2,0 9,50 моль-%
C3H8 + 5,0O2+5,0∙3,762N2→ 3CO2 +4H2O+5,0∙3,762N2 5,0 4,03 моль-%
C7H16 + 11,0O2+11,0∙3,762N2→ 7CO2 +8H2O+11,0∙3,762N2 11,0 1,87 моль-%
C8H18 + 12,5O2+12,5∙3,762N2→ 8CO2 +9H2O+12,5∙3,762N2 12,5 1,65 моль-%

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.