Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Второй закон термодинамики



Согласно второму закону термодинамики теплота самопроиз­вольно может переходить только от более нагретого тела к менее нагретому. Установлено, что в работу может превращаться только часть той теплоты, которая переходит от нагревателя к холодиль­нику, и тем большая, чем больше разность температур:

A = q (2. 24)

где q - теплота, отдаваемая нагревателем; T1—температура на­гревателя; Т2 — температура холодильника.

Отношение называется коэффициентом полезного действия (КПД) - η. Отсюда

η = (2.24)

На основе второго закона термодинамики Клаузиус ввел поня­тие энтропии S — термодинамической функции системы. Измене­ние энтропии ∆S в каком-либо процессе зависит только от начального и конечного состояний системы и не зависит от пути перехода.

Наиболее просто ∆S определяется для обратимых неизолирован­ных изотермических процессов:

∆S = (2.24)

где q — количество теплоты, сообщенное системе.

При изотермическом плавлении или испарении количества ве­щества 1 моль: ∆S = ∆H/T

где ∆H - теплота плавления или теплота испарения.

Если происходит изотермическое расширение п моль идеального газа, то

∆S =nR • 2,3lgV2 /V1 (2.28)

∆S = nR2,31gp1/p2 (2.29)

Если же в системе, состоящей из идеального газа, изменяется одновременно несколько параметров, то

∆S = пСv . 2,3lgT2/T1+ пR • 2,3 lgV2/V1 (2.30)

∆S = пСp • 2,3lgT2/T1 + пR ∙2,3lg p1/p2 (2.31)

∆S = п • 2,3(Cvlg p2/p1 + Cplg(V2/V1) (2.32)

Вычисление ∆S в необратимых процессах ведут по уравнениям для процессов обратимых. Это вполне закономерно, так как изме­нение энтропии при заданном начальном и конечном состояниях системы не зависит от пути перехода и, в частности, от обратимости процесса. Если необратимый и обратимый процессы проводятся в одних и тех же граничных условиях, то
∆Soбр =∆S неoбр.

Примеры

1. К котлу с водой, находящейся при 100 °С, подвели 8374 Дж теплоты. Найти КПД и максимальную работу, которую можно получить от котла, если температура холодильника 30 °С.

Решение. Максимальную работу находим по уравнению (2.24):

А = q(T1 – T2/T1); A = 8374 * (373 – 303)/373 = 1571 (Дж)

Согласно уравнению (II, 25)

η = ; η = 373-303/373= 0,1875, или 18,75 %

2. При временном контакте тела с температурой 200 °С с телом, нагретым до 100 °С, перешло 418,7 Дж теплоты. Найти общее изме­нение энтропии системы.

Решение. Изменение энтропии теплоотдатчика и теплоприемника находим по уравнению (II, 26):

∆S1 =q/T; ∆S1 = -418,7/473 = - 0,885 (Дж)

∆S2 = 418,7/373 = 1,122 (Дж)

Находим общее изменение энтропии:

∆S = ∆S1 +∆S2 ; ∆S = —0,885 + 1,122 = 0,237 (Дж)

3. Азот объемом 0,001 м3 смешан с кислородом объемом 0,002 м3 при 27 °С и давлении 1,013 • 105 Па. Найти общее изменение энтро­пии системы.

Решение. При смешении газы будут диффундировать друг в друга. Межмолекулярным взаимодействием газов можно пренеб­речь, так как при данных условиях газы можно принять за идеаль­ные. Поэтому общее изменение энтропии при смешении газов будет равно сумме изменений энтропий каждого газа при его расширении до объема смеси. Так как процесс изотермический, то из уравне­ния (1.28) для каждого газа

Из уравнения (1.8) n =pv/RT ; n(N2) = 0,001*1,013*105 = 0,0405;

n(O2) = 0,002*1,013*105/8,314*300 = 0,081;

∆S(N2) = 0,0405 * 8,314 * 2,3lg(0,003/0,001) = 0,371 (Дж)

∆S(O2) = 0,081* 8,314 * 2,3lg(0,003/0,002) = 0,274 (Дж)

∆S = 0,371 + 0,274 = 0,645 (Дж)

Эта задача может быть решена и по уравнению (2.29), нужно только по уравнению (2.11б) найти парциальные давления газов:

p(N2) = pоб ;

p(N2) = 1,013 * 105 +0,0405/0,0405 + 0,081 = 0,337 * 105 (Па);

 

p(O2) = 1.013*105 – 0,337*105=0,676*105 (Па);

∆S(N2) = 0,0405*8,314*2,3lg(1,013*105/0,337*105)=0,371 (Дж);

∆S(O2) = 0,081*8,314*2,3lg(1,013*105/0,676*105)=0,274 (Дж);

∆S = 0,371+0,274=0,645 (Дж);

4. Вода массой 1 кг, взятая при 0 °С, переведена в состояние перегретого пара с температурой 200 °С и давлением 101,3 кПа. Вычислить изменение энтропии этого перехода, если удельная теп­лота испарения воды при 100 °С равна 2257 Дж/г, удельная тепло­емкость воды равна 4,187 Дж (г • К), а удельная теплоемкость водяного пара при давлении в 1,013 • 105 Па равна 1,968 Дж (г • К).

Решение. Общее изменение энтропии будет складываться из трех составляющих: изменения энтропии ∆S1 при нагревании воды до температуры кипения, изменения энтропии ∆S2 при пере­ходе воды из жидкого состояния в парообразное и, наконец, изме­нения энтропии ∆S3 при нагревании сухого пара от 100 до 200 °С: ∆S = ∆S1 +∆S2 + ∆S3

∆S1 определяем по уравнению ∆S = пСр • 2,3lg(T2/T1) —. Оно получено из уравнения (II, 31), если предположить, что система под­чиняется законам для идеальных газов и что объем воды при на­гревании не изменяется. Молярная теплоемкость Ср равна удель­ной теплоемкости, умноженной на молярную массу: Ср = 4,187 • 18 = 75,4 (Дж/(моль • К);

п20) = 1000 : 18 = 55,6 моль;

∆S1 = 55,6 • 75,4 • 2,3lg(373/273) = 1305,5 (Дж)

∆S2 находим по уравнению (II, 27). Молярная теплота испаре­ния равна:

∆Hисп = 2256,7 • 18 = 40 620 (Дж/моль);

∆S2 = ∆Hисп/T; ∆S2 = 55,6* 40 620/373 = 6065 (Дж)

При нагревании сухого пара от 100 до 200 °С при постоянном давлении изменение энтропии равно: ∆S3 = пСр *2,3lg(T2/T1). Молярная теплоемкость пара Ср = 1,968 • 18 = 35,42 (Дж/моль).

∆S3 = 55,6 • 35,42 • 2,3lg(473/373) = 464,3 (Дж);

∆S = 1303,5 + 6055 + 464,3 = 7824,8 (Дж)

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.