Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Раздел 4. Применение мехатроники в машинах



4.1. Примеры применения

 

Рассмотрим пример мехатронного обрабатывающего центра изготовленного на станкозаводе “Свердлов” (Санкт-Петербург). Компоновка центра построена по блочно-модульному принципу на базе мехатронных модулей движения и содержит шесть мехатронных модулей движения, четыре низкооборотных модуля движения для перемещения шпиндельной бабки и обрабатывания изделия, один высокоскоростной модуль линейного выдвижения шпинделя.

Благодаря созданию высоко производительным компьютерам и ИММ стало возможным управление движением машин с нелинейной структурой в реальном масштабе времени. Мехатронный подход к интеграции прецизионной механики с микроэлементами, вычислительными и сенсорными устройствами делают перспективным применение машин с параллельной и гибридной кинематикой в промышленности.

Разработка ряда НИИ (НИАТ, Новосибирского технологического университета и компании «Сибирь-Мехатроника»), выпускаемая Савеловским машиностроительным заводом, предназначена для механообработки длинномерных (до 3 м) изделий для автоматической промышленности. В состав данного центра входят рабочий стол с линейным перемещением, гексапод, имеющий шесть управляемых стержней и установленный на стальном восьмиугольном основании. Он также оснащен системой ЧПУ с открытой архитектурой. Для исключения нестандартных движений гексапода разработан и установлен специальный модуль, контролирующий предельные значения скорости и ускорения в приводах. Все движения гексапода визуализируются на дисплее системы управления.

Рассмотрим пример мехатронного обрабатывающего центра изготовленного на станкозаводе «Свердлов» (Санк-Петербург). Компоновка центра построена по блочно-модульному принципу на базе мехатронных модулей движения и содержит шесть мехатронных модулей движения, четыре низкооборотных модулей движения для перемещения шпиндельной бабки и обрабатывающего изделия, один высокоскоростной модуль типа «мотор-шпиндель» и мехатронный модуль линейного выдвижного шпинделя.

Отечественные машины гексаподы выпускает ЗАО «Ланик» (г.Саратов). Это прецизионное оборудование выпускается на единой конструктивной базе в двух видах:

Ø координатно-измерительные машины (КИМ);

Ø технологические модули (ТМ) для механообработки.

Сочетание функций обрабатывающего центра и КИМ дает возможность:

Ø точно «координировать» новые участки относительно уже готовых поверхностей;

Ø корректировать траекторию движения инструмента с учетом деформации обрабатываемой детали (что особо возможно при обработке длинномерных деталей повышенной точности;

Ø аттестовать и при необходимости дорабатывать изделия на одном рабочем месте.

Данный технологический модуль предназначен для обработки с высокой точностью методами фрезерования, шлифования, растачивания, сверления, полирования, гравировки и разметки. Рабочие гексаподы могут меняться. КИМ выполняет автоматические измерения и контроль размеров с погрешностью до 1,1 мкм на длине до 300 мм. Измерения выполняются с помощью специальной головки-щупа, оснащенной датчиками механического или токового касания. Усилие при токовом касании не превышает 0,0003 Н (0,3 гр).

Мехатронный модуль-станок для окончательной обработки пера лопаток газовых и паровых турбин, водяных турбин и гребных винтов различного назначения. Машина имеет нелинейную компоновку и не имеет прямолинейных исполнительных механизмов. Все формообразующие движения реализуются мехатронными модулями вращательного типа. Станок оснащен цифровыми сервоприводом и устройством числового программного управления. Оптикоэлектронная измерительная система ведет замеры поверхности заготовки относительно базовых поверхностей станка и задает оптимальные режимы обработки. Опыт внедрения машин с параллельной и гибридной кинематикой выявил недостатки:

Ø сложность системной интеграции и долгое время поиска неисправностей;

Ø большая трудоемкость обслуживания и программирования в сравнении с традиционным оборудованием;

Ø сложности процедуры калибровки машины;

Ø необходимость знаний станков с ЧПУ, промышленных роботов и методики программирования персоналом;

Ø неоднородность характеристик машины в различных областях рабочей зоны, наличие особых конфигураций.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.