Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Термополимерное воздействие на залежи высоковязкой нефти



Разработка месторождений с нефтями повышенной и высокой вязкости методом традиционного заводнения, особенно в трещиноватых коллекторах, как правило, приводит к низким коэффициентам нефтеизвлечения (0,25-0,27).

Теоретическое и экспериментальное изучение механизма вытеснения нефти водой во ВНИИ и ИГиРГИ показало, что низкие текущие и конечные коэффициенты нефтеизвлечения при заводнении залежей нефти повышенной и высокой вязкости связаны, прежде всего, с неустойчивым продвижением водонефтяных фронтов, с самого начала заводнения развивается явление вязкостной устойчивости - вода в виде языков различной формы и размеров проникает в нефтяную часть пласта, оставляя за фронтом не вытесненные целики нефти.

Устойчивого, более равномерного продвижения водонефтяного контакта (ВНК) можно достигать за счет снижения отношения вязкости нефти и закачиваемого агента. Достигается это за счет увеличения вязкости закачиваемой воды (загущения) полимерным добавками. Известно, что использование полимерных растворов увеличения нефтеизвлечения из пластов, содержащих нефть повышенной и высокой вязкости, дает хорошие результаты, если коллектор нефтяного пласта является терригенным, а также в карбонатных коллекторах при небольшой их трещиноватости.


Однако значительные запасы нефти повышенной и высокой вязкости содержатся в карбонатных коллекторах, обладают повышенной кавернозностью и сильно развитой трещиноватостью. К подобному типу залежей относится черепецкий горизонт турнейского яруса Мишкинского нефтяного месторождения в Удмуртии. Залежь нефти приурочена к пластам с трещиновато-поровыми коллекторами, содержащими нефть высокой вязкости - 78 мПа-с - в пластовых условиях. В большинстве скважин прослеживаются среди пористых плотные разности известняков толщиной от 0,8 до 8 м. Общая толщина залежи нефти в турнейском ярусе 36 м. Проницаемость коллектора 0,213 мкм, пористость 16,4%, начальная нефтенасыщенность 88,0%. Нефть тяжелая, высоковязкая, содержание парафина в нефти - 6%, и асфальтенов - 20-25%. Давление насыщения нефти 9,5 МПа, газонасыщенность - 7 м3/т. Средняя плотность нефти в пластовых условиях равна 0,91 г/см . Начальные геологические запасы 43,6 млн. т. Глубина нефтяной залежи 1500 м. На основе анализа разработки Мишкинского нефтяного месторождения и научных исследований авторами создан и внедрен принципиально новый, высокоэффективный, комбинированный метод - метод (технология) термополимерного воздействия (ТВП) на залежи высоковязкой нефти с трещиновато-пористым коллектором. Патент РФ № 860553 «Способ разработки нефтяной залежи, приуроченной к разнопроницаемому пласту (технология — ТПВ)», приоритет от 19.06.79 г. (Ю.В. Желтов, В.И. Кудинов). Промышленное внедрение этого метода проводится с 1976 по настоящее время (2004 г.) на черепецком горизонте Мишкинского нефтяного месторождения Удмуртии.

Перед проведением промышленных испытаний технологии ТПВ на Мишкинском месторождении были проведены под руководством профессора Ю.В. Желтова и д.т.н. Г.Е. Малофеева в лабораторных условиях на опытной установке исследования тепло-физических свойств полимерных растворов при различных температуре и давлении.

Исследовались теплофизические свойства растворов порошкообразного полиакриламида (ПАА) японского производства марки РДА-Ю20, приготовленных на воде. Исследования проводились в диапазоне концентрации ПАА 0,02-0,1% по сухому порошку, в интервале температур t = 20-90°С и давлений Р = 0,1-20 МПа. Результаты исследования показали, что коэффициенты тепло- и температуропроводности полиакриламида в диапазоне концентраций 0,02-0,1% ниже соответствующих коэффициентов для воды на 17-27%. С ростом давления от 0,1 до 20 МПа происходит незначительное (менее 5%) повышение значений коэффициентов тепло- и температуропроводности растворов ПАА. При повышении температуры раствора с 20 до 90° С наблюдается рост значений коэффициентов в тепло- и температуропроводности на 12-26% во всем диапазоне концентраций и давлений. Исследованные водные растворы ПАА представляют собой водные растворы высокомолекулярного соединения, состоящие из ассоциантов молекул ПАА и воды. Наличие в растворе ассоциантов ПАА, связывающих молекулы воды, приводит к замедлению диффузии и, как следствие, к снижению скорости протекания тепловых процессов. Этим объясняется существенное различие (17-27%) между коэффициентами тепло- и температуропроводности водных растворов ПАА и воды, используемой для их приготовления при малых концентрациях ПАА. Дальнейший рост концентрации полиакриламида в растворе незначительно влияет на физические характеристики раствора.

Основные результаты комплекса проведенных экспериментальных исследований технологии ТПВ сводятся к следующему:

1. Горячий полимерный раствор является более эффективным нефтевытесняющим рабочим агентом,
чем горячая вода и водный полимерный раствор, как в однородных по строению пластах, так и во всех
изученных видах пластов неоднородного строения (слоисто-неоднородных, трещиноватых, трещиной
поровых).

2. Вязкость растворов полиакриламида одинаковой концентрации, приготовленных на
минерализованной воде, ниже вязкости растворов, приготовленных на пресной (дистиллированной воде).
Для химического состава вод, применяемых для закачки ПАА на промыслах Удмуртии, снижение вязкости
при минерализованной воде может составить до 40%.

3. Растворы полиакриламида промысловых концентраций (0,05-0,3% по весу сухого порошка) при
нагревании претерпевают термическую деструкцию, выражающуюся в ухудшении вязкостных
характеристик (в снижении вязкости). В пределах температуры до 85-90° С термическая деструкция
незначительна (не превышает 10-15%) и не может служить препятствием для применения горячего раствора
ПАА при воздействии на сложно построенные: (с карбонатными, трещиноватыми, трещиновато-поровыми и
другими коллекторами) с трудноизвлекаемыми нефтями.

4. При одинаковых концентрцияха растворы полиакриламида, приготоляемыев на минерализованной
воде, менее поражены термической деструкции, чем растворы, приготовляемой пресной
(дистиллированной) воде. Поскольку на нефтяных промыслах для приготовления полимерных растворов
применяют в той или иной степени минерализованные воды, то опасность обратимой термодеструкции
уменьшается.

5. Теплофизические свойства (теплопроводность, теплоемкость и температуропроводность) водных
растворов полиакриламида промысловых концентраций (0,02-0,1% по сухому порошку) в интервале 20-90°
С и 0,1-20 МПа ниже теплофизических свойств воды-растворителя. Следовательно, при движении горячего
раствора полимера по стволу скважины будет меньше потерь тепла, чем в случае нагнетания горячей воды.
С повышением температуры (от 20 до 90° С) происходит некоторое увеличение тепло- и
температуропроводности; такие изменения наблюдаются и с ростом давления (от 0,1 до 20 МПа), но в


значительно меньшей степени.

Многосторонние лабораторные исследования, проведенные физических моделях пластов различного строения (однородно-слоистых, трещиноватых, трещиновато-поровых и др.) с использованием в качестве вытесняющего рабочего агента самых разнообразных жидкостей (холодной и горячей воды, раствора глицерина, холодного и горячего раствора полиакриламида и т.п.) позволили сделать важный практический вывод: самым лучшим рабочим агентом для воздействия на пласт при разработке сложнопостроенных месторождений с трудноизвлекаемыми нефтями является горячий раствор полиакриламида с температурой нагрева до 90° С.

Механизм нефтеизвлечения при использовании метода ТПВ следующий: нагретый до 90-95°С водный раствор полиакриламида, имея вязкость 1,5-2 мПа-с, при закачке в нефтяной пласт поступает, прежде всего, в естественно существующую в карбонатном коллекторе систему трещин и далее проникает в глубь пласта. Таким образом, часть залежи оказывается охваченной горячим агентом воздействия, что приводит к снижению вязкости нефти, содержащейся в блоках (матрице) трещиновато-порового коллектора. Продвигаясь в начале закачки прежде всего по трещинам, горячий раствор полиакриламида через некоторое время остывает (температура в пласте 32° С), эффективная вязкость его при этом существенно увеличивается (до 10-15 мПа-с). Общие гидравлические сопротивления пласта начинают возрастать. В этой связи неизбежно увеличивается доля раствора, поступающего из трещин в матрицу, т.е. основная емкостная часть пласта оказывается охваченной воздействием закачиваемого горячего раствора полиакриламида (ПАА).

Снижение вязкости нефти (увеличение ее подвижности) положительно влияет на увеличение роли механизма капиллярной пропитки блоков (матрицы). Нагнетание нагретого раствора ПАА в пласт приводит к улучшению смачиваемости пористой среды, а также становится более гидрофильной), что положительно сказывается на капиллярной пропитке матрицы. Если система трещин в пласте достаточно разветвленная, то эффективность от закачиваемого горячего раствора полиакриламида (ПАА) будет выше по сравнению с воздействием горячей водой, которая преимущественно работает только по макротрещинам.

Преимущество метода ТПВ заключается в ограничении общего количества раствора ПАА, которое необходимо нагревать, т.к. для создания необходимого «теплового охвата» не потребуется таких больших количеств закачиваемого теплоносителя, в случае нагнетания горячей воды.

Изученный механизм ТПВ показал, что горячий раствор полиакриламида, проникающий прежде всего по трещинам, учитывает свою вязкость примерно на порядок по сравнению с горячей водой. Гидравлические сопротивления на фронте вытеснения для полимерного раствора оказываются значительно больше, чем для горячей воды, что приводит к увеличению коэффициента охвата пласта воздействием.

Результаты теоретических и экспериментальных исследований и длительного промышленного внедрения показывают прирост конечного нефтеизвлечения при ТПВ по сравнению с воздействием необработанной водой (для указанных выше геолого-физических условий) составляет 20-25%.

Условия и критерии применимости метода термополимерного воздействия разделяются на геолого-физические и технологические. Одним из главных критериев применимости ТПВ является величина вязкости нефти в пластовых условиях (50 мПа и более). Верхний предел величины вязкости пластовой нефти ограничивается 500 мПа-с. Применимость термополимерного воздействия существенно зависит от проницаемости матрицы (блоков) трещиновато-порового коллектора: при проницаемости менее 3-10-2 мкм2 метод малоэффективен ввиду низких скоростей капиллярной пропитки блоков. Наибольший эффект этот метод дает для трещиновато-поровых систем. Допустимая глубина залегания продуктивных пластов для ТПВ ограничивается величиной пластовой температуры, которая должна быть не более 70°С (при температуре 100° С наступает деструкция полимерного раствора). Для получения надежного результата от проведения термополимерного воздействия нефтяной пласт не должен иметь подошвенную воду.

ТПВ применимо как при рядной системе расстановки скважин (внутриконтурное заводнение), так и при площадной системе. Получение высоких коэффициентов нефтеизвлечения при ТПВ не зависит от времени его применения (с начала или на поздней стадии разработки). Хотя наилучшие результаты очевидны, когда этот метод применяется с самого начала разработки залежи. Обязательным технологическим условием успешности процесса ТПВ является обеспечение непрерывности закачки горячего полимерного раствора в расчетных объемах, а также соблюдение температурного режима. Для технологии термополимерного воздействия требуются водорастворимые полимеры (преимущественно полиакриламидного типа) различных товарных марок и модификаций (в порошке, в гранулах, гелеобразные и т.д.), однако требуется обязательная их проверка на качество и термостойкость. Полимеры для ТПВ должны сохранять свои свойства по реологии до температуры 95-100°С. Успешность ТПВ во многом зависит от качества приготовления полимерного раствора. Раствор полимера, поступающий в пласт, не должен содержать твердых или гелеобразных частиц. Полимерный раствор не должен подвергаться при закачке интенсивной механической деструкции. Лучше использовать поршневые насосы вместо центробежных. Потери тепла при прохождении полимерного раствора от подогревателя до забоя скважины должны быть минимальными.

С этой целью наружные трубопроводы горячего полимерного раствора необходимо закрывать супертонким базальтовым волокном с наружным металлическим окожушиванием, а в скважину спускать термонизолированые насосно-компрессорные труыб.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.