Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

СРЕДСТВА, ВЛИЯЮЩИЕ НА ПРОЦЕССЫ ТКАНЕВОГО ДЫХАНИЯ



Общие представления о физиологии и патофизиологии тканевого дыхания.

Процесс тканевого дыхания – это процесс окисления углеводородных субстратов в митохондриях, сопровождающийся синтезом АТФ. В клетках организма человека преобладает аэробный (кислород-зависимый) метаболизм, который требует для окисления субстратов кислорода. На молекулы кислорода специальными ансамблями ферментов (дыхательными цепями) переносятся электроны и протоны от субстратов оксиления. Перепады энергии, которые образуются при переносе протонов фермент Н+-АТФаза преобразует в энергию макроэргических связей АТФ. Таким образом, процесс тканевого дыхания предполагает наличие 3 участников – субстратов, кислорода и макроэргических молекул – аккумуляторов энергии.

Субстраты окисления.

Основными субстратами окисления в организме являются углеводы (глюкоза и гликоген), которые расщепляются гликолитическим путем до молочной кислоты (при недостатке кислорода) или до СО2 и Н2О (при избытке кислорода). Процесс гликолиза – энергетически выгоден (1 моль глюкозы дает 38 моль АТФ) и весьма экономичен (на каждый потраченный моль кислорода синтезируется 6,33 моль АТФ). Однако, гликолитический путь имеет ряд ограничений:

· Углеводы – осмотически активные молекулы, они легко приобретают гидратную оболочку, что не позволяет создавать их большие запасы в организме, т.к. грозит водной перегрузкой.

· Гликолитический путь требует инсулина – единственного гормона, который способен обеспечить транспорт глюкозы в клетку.

· Гликолитический путь жестко регулируется количеством поступающего в клетку кислорода. Снижение парциального давления кислорода тормозит активность этого пути (эффект Пастера).

Гликолитический путь является основой метаболизма нервной ткани, преобладает в мышечной ткани в первые 15-20 мин работы.

Липолитический путь метаболизма представлен катаболизмом жирных кислот, которые обеспечивают организм энергией за счет процесса b-окисления. Источником жирных кислот служат пищевые продукты и триглицериды жировых депо организма. Липолитический путь метаболизма имеет ряд преимуществ, по сравнению с гликолитическим путем:

· Триглицериды – осмотически неактивные вещества, они не способны задерживать в организме воду, поэтому объем жировых депо организма теоретически не может быть ограничен.

· Липолитический путь регулируется ансамблем ферментов и гормонов, функции которых взаимно дополняют и перекрывают друг друга. Если выпадает функция одного из регулирующих факторов работа липолитического пути существенно не страдает.

· Липолитический путь выгоднее гликолитического в плане энергопродукции. b-Окисление гексановой кислоты (С6 аналог глюкозы) дает на 1 моль вещества 45 моль АТФ.

· В процессе липолитического пути метаболизма может образоваться достаточное количество ацетил-КоА для синтеза кетоновых тел – транспортной формы энергетических субстратов для органов, где липолиз изначально протекать не может.

· Липолитический путь не подвержен эффекту Пастера и может протекать даже при весьма низком напряжении кислорода в тканях.

Схема 6. Свободно радикальные процессы в организме. Свободнорадикальные процессы включают процесс генерации активных форм кислорода (1) и процесс развития перекисного окисления (2). В прямоугольных блоках указаны вещества, способные нейтрализовать каждый из этапов развития данного процесса. SOD – супероксиддисмутаза, SH-Glu – глутатион, Vit – витамины, CoQ – коэнзим Q, LH – липид, содержащий легкоокисляемый протон.

К сожалению, одним из недостатков липолитического пути является его неэкономичность – потребление 1 моль кислорода позволяет организму получить только 5,63 моль АТФ. Липолитический путь получения энергии является одним из основных в миокарде (наряду с гликолитическим) и скелетных мышцах (через 15-20 мин после начала работы). Кетоновые тела, которые образуются в ходе липолитического пути в печени потребляются нервной тканью в качестве резервного источника энергии.

Кислород.

В нормальных условиях 98-99% молекулярного кислорода подвергается тетравалентному восстановлению, в результате переноса электронов и протонов по системе цитохромов дыхательных цепей митохондрий, путем следующей реакции:

.

Однако, 1-2% от общего количества кислорода подвергается одновалентному восстановлению, при этом образуются активные формы кислорода (АФК) – молекулы, которые имеют неспареный электрон: супероксидный анион (О2), перекись водорода (Н2О2), гидроксильный радикал (ОН), синглетный кислород (1О2).

Генерация кислородных радикалов протекает в 2 этапа:

1. Ферментативное образование супероксидного радикала:

[ В нейтрофилах, моноцитах и макрофагах есть фермент НАДФ-оксидаза, который за счет элеткронов НАДФ восстанавливает кислород (т.н. «кислородный взрыв» макрофагов).

[ В кишечнике, печени, почках есть фермент ксантин-дегидрогеназа, который обеспечивает окисление гипоксантина (продукт обмена пуринов) в мочевую кислоту. В условиях гипоксии этот фермент окисляется и превращается в ксантин-оксидазу, которая выполняет окисление гипоксантина с одновременной генерацией супероксидного радикала.

[ Аутоокисление гемоглобина до метгемоглобина, также сопровождается генерацией супероксидного радикала.

[ Синтез катехоламинов Р450-гидроксилазными системами, также связан с генерацией супероксидного радикала.

2. Неферментативная генерация активных форм кислорода. Осуществляетс при помощи 2 реакций:

[ Реакция Haber-Weiss – реакция образования активных форм кислорода из суперокисдного радикала в пристуствии перекиси водорода или металлов с переменной валентностью (Fe3+, Cu2+):

О22О2 → О2+НО-+НО;

Fe3+2 → Fe2++1О2;

Cu2+2 → Cu++1О2

[ Реакция Fenton – реакция образования активных форм кислорода из перекиси при участии Fe2+:

Fe2+2О2 → Fe3++НО-+НО.

Образовавшиеся активные формы кислорода – высокореакционные молекулы, которые имеют весьма короткий период существования, но способны вызвать окисление ряда макромолекул организма. Процесс окисления макромолекул – важный физиологический процесс, но если он выходит из-под контроля, то может нанести весьма существенный вред (таблица 6).

Таблица 6. Мишени воздействия активных форм кислорода и их значение.

Макромолекулы-мишени Физиологическая роль Патофизиологическая роль
Гиалуроновая кислота. Под влиянием АФК происходит образование эндоперикисей кислоты и разрыв ее цепей на мелкие фрагменты Обеспечивает миграцию макрофагов из сосудов к очагу воспаления или инфекции. Вызывает деградацию суставных хрящей, развитие артритов и артрозов
Нуклеиновые кислоты. АФК вызывают модификацию остатков азотистых оснований: · тимин → тимин-гликоль · метилурацил → 5-гидрокси-метилурацил · гуанин → 8-гидроксигуанин Такая модификация приводит либо к аномальным разрывам ДНК, либо к неправильному спариванию оснований.   Активация онкогенов, канцерогенный эффект.
Белки. Происходит модификация остатков аминокислот: · метионин → метионин-сульфоксид; · пролин → дециклизация с разрывом пептида и образованием глутаминовой кислоты · Инактивация экзотоксинов бактерий; · Нарушение метаболизма у бактерий. Окисление долгоживущих белков хрусталика (кристаллина, вителлина и др.) с развитием катаракты.
Липиды. Окисление ненасыщенных связей с образованием эндоперикисей, которые в последующем распадаются на алифатический углеводород, малоновый диальдегид и короткоцепочечную жирную кислоту. · Синтез эйкозаноидов: простагландинов, лейкотриенов. · Инактивация бактериального липополисахарида (эндотоксина). · Окисление ЛПОНП и ЛПНП с повышением их атерогенности. · Окисление липидов мембран в очаге ишемии после восстановления кровотока и рост зоны инфаркта («реперфузионное повреждение»).

Система, при помощи которой клетки сдерживают процесс перекисного окисления в допустимых физиологических границах называется системой антиоксидантов. Различают 2 группы антиоксидантов:

1. Антиоксиданты, которые непосредственно нейтрализуют АФК:

[ Супероксиддисмутаза, простагландины Е2 и D2 – нейтрализуют супероксидный радикал в реакции: О2+ 2Н+ → О22О2.

[ Каталаза, глутатион-пероксидаза (при участии восстановленной формы глутатиона) – нейтрализуют перекиси в реакциях:

2SH-Glu+Н2О2 → 2Н2О+Glu-S-S-Glu;

2H2O2 → O2+2H2O.

[ Мочевина – нейтрализует гидроксильные радикалы.

2. Антиоксиданты, которые реактивируют окисленные макромолекулы:

[ Витамин Е, a-липоевая кислота, НАД, коэнзим Q10 – восстанавливают эндоперекиси липидов.

[ Витамин С – восстанавливает мукополисахариды и белки.

[ Тиоредоксин, Глутаредоксин – ферменты, которые восстанавливают белки в реакциях:

;

.

[ Поли-АДФ-рибозил синтаза – фермент, который восстанавливает модифицированные азотистые основания в молекулах нуклеиновых кислот.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.