Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Принципы и методы получения фуллеренов, нановолокон и нанотрубок на установке «Таунит»



Лабораторная работа 1.

Цель работы: изучить принцип действия и основные узлы установки для получения фуллеренов, нановолокон и нанотрубок «Таунит»

Оборудование и инструмент: установка «Таунит»

Краткая теоретическая часть

Углерод является достаточно распространенным элементом. В твердом состоянии в природе он присутствует в виде графита и алмаза. Искусственно были созданы также такие модификации углерода, как карбин и лонсдейлит. Последний был также обнаружен в составе метеоритов. В 1985 г. при исследовании паров графита, полученных испарением лазерным лучом при длительности лазерного импульса 5 нс с поверхности вращающегося графитового диска, были обнаружено наличие кластеров (или многоатомных молекул) углерода (рис.1).

При последующих исследованиях этих образований выяснилось, что наиболее стабильными из обнаруженных соединений оказались молекулы с большим четным числом атомов, в первую очередь состоящие из 60 и 70 атомов - C60 и C70. Соединение C60 имеет сферическую форму схожую с футбольным мячом, а C70 - ближе к форме дыни (рис. 2).

Фуллерены представляют собой замкнутые молекулы углерода, в которых все атомы расположены в вершинах правильных шестиугольников или пятиугольников, покрывающих поверхность сферы или сфероида. Название фуллеренов связано с именем известного американского архитектора и математика Фуллера. Как архитектор он предложил строительные конструкции в виде многогранных сфероидов, предназначенные для перекрытия помещений большой площади, а как математик –использовал системный подход к анализу структур различного происхождения и показал, что структура является самостабилизирующейся системой.

Фуллерены отличаются необычной кристаллографической симметрией и уникальными свойствами. Все ковалентные связи у них насыщены, поэтому отдельные молекулы между собой могут взаимодействовать только посредством слабых сил Ван-дер Ваальса. Однако последних хватает, что бы построить из сферических молекул кристаллические структуры. Такие материалы называются фуллеритами. Стабильные молекулы характеризуются цепными конфигурациями, формирующимися из пяти- и шестичленных колец.

В большинстве случаев у них углеродные атомы имеют три пространственные связи (подобно фрагментам решетки алмаза). Длина и углы между связями также характерны для структуры алмаза.

Рис. 1. Времяпролетный масс-спектр углеродных кластеров, получаемых при лазерном испарении графита .

Рис. 2. Фуллереновые молекулы: а) C60, б) C70, в) прогноз молекулы фуллерена, содержащей более 100 атомов углерода.

 

В настоящее время научились получать легированные фуллерены, путем добавления к их молекулам других атомов или молекул, в том числе и помещением атома легирующего элемента во внутренний объем молекулы. С использованием высокого давления или лазерного облучения существует возможность соединения двух фуллереновых молекул в димер или полимеризации исходной структуры мономеров.

Классическим способом получения фуллеренов является испарение в вакууме углерода с получением перегретого (до 104 К) углеродного пара. Затем перегретый пар интенсивно охлаждают в струе инертного газа (например, гелия). В результате происходит осаждение порошка в котором присутствует значительное количество кластеров (молекулы) двух групп – малого размера с нечетным числом атомов углерода (до С25) и большого размера с четным числом атомов ( C60 и C70). Далее с использованием, например, методов порошковой металлургии происходит их разделение. Тем более, что кластеры, относящиеся к первой группе не является стабильными образованиями. Подбирая параметры процесса возможно получение молекул и с большим числом атомов (С100 и более). Существуют и ряд других методов.

Для получения тонких композитных пленок (с толщиной 200 - 600 нм) на основе фуллереновой матрицы используется метод вакуумного термического напыления смеси заданного состава на подложки, например на GaAs (рис. 3). Смесь порошка С60 с чистотой 99,98% и CdTe была приготовлена путём их совместного размельчения до 1 мкм и спекания при температуре 300о С. Напыление проводили в вакууме при давлении 10-6 Тор и температуре подложки около 160о С. Полученные пленки не имели заметных пространственных неоднородностей химического состава.

Рис. 3. Поверхность пленки «фулерен С60 - 40% CdTe»

 

Очень большая твердость фуллеренов позволяет производить из них фуллеритовые микро- и наноинструменты для обработки и испытаний сверхтвердых материалов, в том числе и алмазов. Например фулеритовые пирамидки из С60 используются в атомно-силовых зондовых микроскопах

Рис.4. Модели поперечного сечения многослойных нанотрубок: а) «матрешка», б)«сверток», в) атомарная структура однослойной нанотрубки.

 

для измерения твердости алмазов и алмазных пленок. Фуллерены также широко исследуются как материалы для электронно-оптической области применения. Фуллерены и соединения на их основе также являются перспективными материалами для создания наноструктур. Доказано, что фуллереновые плёнки могут быть использованы для создания двумерных фотонных кристаллов. Причем оптические свойства фуллереновых пленок можно изменять за счет введения в них добавок полупроводниковых материалов, например CdSe и CdTe.

В последнее время научились выращивать однослойные и многослойные углеродные нанотрубки (рис. 4). Свойствами таких трубок можно в определенной мере управлять путем изменения их хиральности, т.е. направления закручивания их решетки относительно продольной оси. Поверхность нанотрубок образована, как и в случае фуллеренов, из шестиугольников, в вершинах которых располагаются атомы углерода. Получают углеродные нанотрубки как с металлическим типом проводимости, так и с заданной запрещенной зоной. Соединение двух таких трубок будет образовывать диод, а трубка, лежащая на поверхности окисленной кремниевой пластины – канал полевого транзистора. Набор нанотрубок с заданным внутренним диаметром могут служить основой для создания молекулярных сит высокой селективности и газопроницаемости. Композиционные материалы с использованием углеродных нанотрубок будут иметь весьма важное значение в качестве защитных экранов от излучения и других важных конструкционных материалов ответственного назначения.

Краткие сведения об установке

Установка представляет собой реактор полунепрерывного действия синтеза углеродного наноматериала «Таунит» (далее — УНМ «Таунит»).

Технические характеристики установки:

Производительность: до 2000 кг/год

Температура: 600-650 С

Давление: атм.

Сырье: СхНу

Потребляемая мощность: 35 кВт

Габаритные размеры: 3,7 х 2,8 х 2,0 м

Загрузка катализатора и выгрузка УНМ-автоматическая

Способ получения: газофазное химическое осаждение (каталитический пиролиз-CVD) углеводородов (СхHy) на катализаторах (Ni/Mg) при атмосферном давлении и температуре 580÷650 °С.

Время процесса 10÷80 мин.

Качество разработанной технологии и оборудования подтверждают 14 патентов, полученных в 2006-2009 гг.

На сегодняшний день установка представляет собой всю линию для производства углеродного материала «Таунит», включающую в себя:

  • реактор для синтеза углеродных наноматериалов «Таунит» методом газофазного химического осаждения (CVD) в процессе каталитического пиролиза углеводородов по разработкам ООО «НаноТехЦентра» и Тамбовского Государственного Технического Университета;
  • систему газоподготовки;
  • систему автоматики;
  • систему утилизации продуктов реакции;
  • систему кислотной очистки продуктов;
  • систему телеметрического контроля процесса синтеза.

 

Микроструктура УНМ "Таунит" Электронная микроскопия

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.