Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Химические свойства моносахаридов



В химическом отношении монозы в растворах проявляют свойства спиртов, карбонильных соединений и полуацеталей. В каждой конкретной реакции моносахарид реагирует либо в открытой, либо в циклической форме.

Алкилирование в мягких условиях даёт алкилглюкозид. Причём в реакцию вступает только наиболее активный гликозидный (полуацетальный) гидроксил. В жёстких условиях реакция идёт глубже. Моносахариды вступают в процесс в циклической форме.

α-D-глюкопираноза метил-α-D-глюкопиранозид

пентаметил-α-D-глюкопиранозид

– Аналогично протекает реакция ацилирования

α-D-глюкопираноза пентаацетил-α-D-глюкопиранозид

 

Альдозы легко окисляются. В мягких условиях образуются одноосновные гидроксикислоты (альдоновые кислоты). При энергичном окислении получаются двухосновные гидроксикислоты

– При восстановлении моносахариды переходят в многоатомные спирты

Реакции моносахаридов с синильной кислотой позволяют устанавливать конфигурацию молекулы и из низших моносахаридов получать высшие.

Реакция с гидроксиламином – метод установления структуры углеводов и перехода от высших моноз к низшим. Превращение протекает по схеме: образование оксима, его дегидратация до оксинитрила, отщепление HCN в присутствии влажного оксида серебра.

Деградация альдоз по Руффу представляет собой декарбокислирование соли альдоновой кислоты, в результате которого углеродная цепь альдозы укорачивается на один атом со стороны альдегидной группы. Окисление альдозы до альдоновой кислоты происходит под действием бромной воды. Декарбоксилирование проводят смесью пероксида водорода и соли трехвалентного железа:

Реакция с фенилгидразином является методом перехода от альдоз к кетозам.

При действии щелочей моносахариды, подвергаясь тауто-мерии, дают промежуточную енольную форму и могут менять строение второго тетраэдра углевода, переходя в эпимерное соединение.

Брожение гексоз – сложный процесс расщепления моносахаридов под влиянием микроорганизмов. Сопровождается обычно образованием газообразных продуктов, спиртов, кислот и т.д.

Спиртовое брожение:

Маслянокислое брожение:

Молочнокислое брожение:

Альдопентозыимеют следующее строение.

Согласно первой формуле в молекуле находятся три асимметрических атома углерода и возможны 8 стереоизомеров а согласно второй, для каждого из 8 – ещё α- и β-формы.

Рибоза

Рибоза играет большую биологическую роль. Она входит в состав рибонуклеиновых кислот (РНК). Остаток ее производного, дезоксирибоза, в котором гидроксильная группа у второго атома углерода замещена водородом с потерей атома кислорода (дезокси – отсутствие атома кислорода), входит в состав дезоксирибонукле-иновых кислот (ДНК).

В природе пентозы встречаются, главным образом, в виде полисахаридов – пентозанов – которые при гидролизе дают пентозы

Пентозаны обнаружены в древесине, в сене, соломе, подсолнечной лузге и т.д. При нагревании с кислотами пентозы отщепляют по 3 молекулы воды и переходят в циклический альдегид – фурфурол.

Гексозы

Из гексоз наибольшее значение имеют D-глюкоза, D-манноза,
D-галактоза и D-фруктоза. D-(+)-глюкоза или виноградный сахар в больших количествах содержится в растениях и живых организмах.

Очень много её в соке винограда и других сладких плодов. Распространённости глюкозы способствует большая устойчивость её конформации. D-(+)-глюкоза – сладкое вещество (примерно 2/3 сладости тростникового сахара), кристаллическое. При восстановлении глюкоза даёт 6-атомный спирт – сорбит. Он тоже сладок и находится в ягодах рябины, соке вишен, слив, яблок, груш и т.д. В промышленности глюкозу обычно получают из крахмала кипячением его с разбавленной серной кислотой, применяется в кондитерском производстве как дешёвый заменитель тростникового сахара. В хлопчатобумажной промышленности она используется как восстановитель при крашении и печатании. Из глюкозы получают аскорбиновую кислоту (витамин «С»). D-(+)-манноза сравнительно мало распространена в природе и встречается в ячмене, пшенице и т.д.

При восстановлении даёт спирт – маннит, который встречается в высушенном соке некоторых южных растений (маслины, жасмин, ясень). И манноза и маннит сладкие на вкус.

D-(+)-галактозавстречается в природе в виде полисахаридов, (молочный сахар).

D-(+)-галактоза

При восстановлении даёт спирт, дульцит, содержащийся в растениях. D-(–)-фруктоза или фруктовый сахар вместе с глюкозой находится в соке многих плодов.

Смесь равных количеств D-глюкозы и D-фруктозы составляет около 80 % массы мёда. Фруктоза в 1,5 раза слаще тростникового сахара и 2 раза слаще глюкозы.

 

51.Полисахари́ды – общее название класса сложных высокомолеку-лярных углеводов, молекулы которых состоят из десятков, сотен или даже тысяч остатков моносахаридов.К этой группе сахаров относятся крахмал и целлюлоза(клетчатка). Оба полисахарида построены из остатков глюкозы: крахмал – из остатков α-D-глюкопиранозы, клетчатка – β-D-глюкопиранозы.

Их общая формула (С6H10O5)n или [ C6H7O2(OH)3]n

Крахмал содержится в растениях и является запасным питательным веществом для них. Для человека и животных он также служит важнейшим питательным веществом. Крахмал в виде зёрен откладывается преимущественно в клубнях и зёрнах растений. Например, в основном техническом источнике крахмала – клубнях картофеля – содержится ~ 20 % крахмала. В зёрнах пшеницы его до 70 %. Крахмал – представляет собой белый нерастворимый в воде порошок. С йодом крахмал даёт синее окрашивание, которое исчезает при нагревании и вновь появляется при охлаждении. Зерно крахмала построено из двух различных веществ: амилозы, которая составляет внутреннюю часть зерна и амилопектина, являющегося оболочкой.

Амилоза построена из нескольких сот остатков α-D-глюкозы, соединённых по 1,4-связям и образующих линейную цепочку. В амилопектине линейные цепи связаны между собой ещё 1,6-связями и образуют высокоразветвлённые молекулы. Содержание амилозы в крахмале составляет 10…30 %, амилопектина – 70…90 %. Амилопектин с водой даёт клейстер, амилоза – коллоидный раствор. При гидролизе крахмалпостепенно расщепляется на более простые углеводы по схеме: крахмалрастворимый крахмал → декстрины → мальтоза → D-глюкоза. Крахмал имеет большую пищевую ценность. Из него изготовляют клей, гидролизом получают глюкозу. Блестящая корочка хлеба также состоит из декстринов. Основное значение хлебопечения состоит в превращении нерастворимого крахмала в растворимые и легко усваиваемые организмом декстрины. Очень близок по строению к крахмалу гликогенили животный крахмал. Это разветвленный полисахарид (C6H10O5)n со связями 1…4 в линейных участках и 1…6 в разветвлениях, молекулы которого также построены из остатков α-D-глюкопиранозы. Основной запасной углевод человека и животных. Гликоген является основной формой хранения глюкозы в животных клетках. Гликоген содержится во всех тканях, откладывается в печени и является резервным веществом в организме человека и животных (в растениях такие функции выполняет крахмал).

Целлюлоза(клетчатка). По общей своей массе целлюлоза на Земле занимает первое место среди всех органических соединений, обладает большой механической прочностью и выполняет роль опорного материала растений, образуя стенку растительных клеток. В большом количестве целлюлоза содержится в тканях древесины (40…55 %), в волокнах льна (60…85 %) и хлопка (95…98 %). Основная составная часть оболочки растительных клеток (отсюда второе название – клетчатка). Образуется в растениях в процессе фотосинтеза. Молекулы целлюлозы, подобно молекулам амилозы крахмала, имеют линейное строение. Целлюлоза не растворяется в воде, эфире и спирте, устойчива к действию разбавленных щелочей, кислот, слабых окислителей, растворима в реактиве Швейцера. При действии на целлюлозу растворов кислот, она гидролизуется до D-глюкозы.В промышленных масштабах целлюлозу выделяют в огромных кол-вах при производстве бумаги. Значительное кол-во целлюлозы идёт на получение искусственных волокон, пластмасс.

52. Липиды (от греч. lipos – жир) представляют собой группу природных органических соединений, различающихся по своей химической структуре и функциям. Однако они характеризуются следующими общими признаками: нерастворимостью в воде, а растворимостью в органических растворителях (эфире, хлороформе, бензоле), гидрофобностью и содержанием высших жирных кислот.

Липиды содержатся в животных и растительных организмах. Извлекают из любого растительного материала в виде сложной смеси и в зависимости от способов и приемов экстрагирования, вида растворителя различают свободные, связанные и прочно связанные липиды.

Состав свободных и связанных липидов неодинаков. Основная фракция свободных липидов – триацилглицеролы (60-70%), а связанных липидов (фосфолипидов) от 30 до 40%.

 

ФУНКЦИИ ЛИПИДОВ

В организме липиды выполняют пять основных функций:

1) энергетическую – являются резервными соединениями, основной формой запасания энергии и углерода. При окислении 1г нейтральных жиров (триацилглицеролов) выделяется около 38 кДж энергии;

2) защитную – липиды (воски) образуют защитные водоотталкивающие покровы растений, их семян и плодов и термоизоляционные (жир) прослойки у животных организмов;

3) структурную – являются главными структурными компонентами клеточных мембран;

4) липиды служат предшественниками ряда других биологически активных веществ – витамина Д, желчных кислот, каротиноидов, стеролов и т.д.;

5) регуляторную – производными жирных кислот являются стероидные гормоны и простагландины – гормоны местного действия. От свойств и структуры мембранных липидов во многом зависит активность мембраносвязанных ферментов. Липидами являются жирорастворимые витамины и провитамины (каротины, стеролы); обладая высокой биологической активностью, эти вещества оказывают регулирующее влияние на обмен веществ.

КЛАССИФИКАЦИЯ ЛИПИДОВ

Существует несколько классификаций липидов. Наибольшее распространение получила классификация, основанная на структурных особенностях липидов и их способности к гидролизу (рисунок 1).

Рисунок 1 – Классификация липидов

 

 

53. Простые и сложные липиды легко омыляются. При действии кислот и щелочей на них происходит расщепление сложноэфирной связи – омыление жира. При этом выделяются свободный спирт и свободные жирные кислоты или их соли.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.