Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Глава 3. ДНК и превратности судьбы



Как природа читает ДНК и как она при этом ошибается?

 

День 6 августа 1945 года вполне неплохо начинался для одного японца, который без преувеличения стал самым невезучим человеком XX века. Цутому Ямагучи вышел из автобуса около штаб-квартиры фирмы «Мицубиси» в городе Хиросима, но вдруг вспомнил, что забыл свой инкан – так японские чиновники называли особую печать, которую макали в красные чернила и проштамповывали ею документы. Ямагучи приуныл из-за такой рассеянности – ничего не оставалось делать, кроме как возвращаться за инканом в дешевую гостиницу, где он остановился. Однако тот день казался ему очень удачным, испортить его было сложно. Ямагучи как раз закончил проектировать для компании «Мицубиси» танкер водоизмещением в пять тысяч тонн, и теперь компания должна была, наконец-то, отпустить его домой, на юго-запад Японии, где Цутому жил вместе с женой и новорожденным сыном. Война нарушила весь ритм его жизни, но уже 7 августа все должно было наладиться.

Стоило Ямагучи разуться на пороге гостиницы, как он сразу же столкнулся с ее пожилыми хозяевами, которые, казалось, поджидали его и тут же пригласили на чай. Ямагучи не мог отказать этим одиноким старикам, и неожиданные посиделки еще немного его задержали. Но вот Ямагучи сходил за инканом, обул ся, поспешил на улицу, поймал такси, вышел неподалеку от работы и пошел по кромке картофельного поля. Именно тогда он и услышал над головой гул вражеского бомбардировщика. Ямагучи едва успел заметить пятнышко, отделившееся от самолета. На часах было 8:15.

Многие уцелевшие вспоминают, что бомба рванула как-то не сразу. Грохот обычной бомбы раздается практически одновременно со вспышкой взрыва. А эта бомба мерцала и разбухала постепенно, раскаляясь все сильнее. Ямагучи понял, что окажется почти в эпицентре взрыва, поэтому не мешкал. К тому времени все уже привыкли к воздушным тревогам, поэтому Ямагучи ринулся на землю, зажмурился и заткнул уши пальцами. Ослепительная вспышка длилась какое-то мгновение, потом раздался страшный гул, а за ним последовала ударная волна. В следующий момент Ямагучи ощутил где-то под собой сильнейший порыв ветра, пробравший его до печенок. Мужчину подбросило высоко вверх, он пролетел какие-то метры по воздуху и без чувств упал на землю.

Очнувшись, Ямагучи не понимал, сколько времени прошло – может быть, считаные секунды, а может быть, час. В городе стоял сумрак. Грибовидное облако подняло с земли тонны пепла и грязи, рядом догорали высушенные листочки картофеля. Кожа Цутому также словно пылала. После выпитого горячего чая он закатал рукава рубашки, а теперь увидел, что предплечья страшно обгорели – по виду увечья напоминали сильнейшие солнечные ожоги. Он поднялся и, пошатываясь, побрел через картофельное поле, через каждые несколько шагов останавливаясь передохнуть, спотыкаясь о другие жертвы – обгоревшие, истекающие кровью, разорванные взрывом. Движимый странным чувством долга, он добрался до офиса «Мицубиси». На месте бывшего здания он нашел дымящиеся развалины, по которым кое-где трепетали последние огоньки, а также обнаружил множество погибших коллег – ему, опоздавшему, так повезло. Ямагучи шел дальше, время медленно текло час за часом. Ямагучи пил воду из покореженных труб, а на станции скорой помощи смог попробовать печенье, после чего его сразу же стошнило. Ближайшую ночь Ямагучи скоротал под перевернутой лодкой на берегу моря. Левая рука Цутому почернела, так как в момент взрыва оказалась без всякой защиты подставлена под белую вспышку.

Все это время под опаленной кожей Ямагучи его ДНК страдала от гораздо более тяжелых увечий. Атомная бомба, сброшенная на Хиросиму, окатила город потоками разнообразного излучения, в том числе высокоэнергетическими рентгеновскими и гамма-лучами. Гамма-лучи, как и другие разновидности радиоактивного излучения, цепляют ДНК и наносят ей точечный ущерб. Гамма-лучи простреливают ДНК и окружающие ее молекулы воды, выбивая из атомов электроны, как зубы при апперкоте. Из-за внезапной потери электронов атомы превращаются в свободные радикалы – химически активные осколки, которые бурно образуют химические связи. Начинается цепная реакция, расплетающая ДНК, а иногда даже рвущая хромосомы на куски.

К середине 1940-х годов ученые начали постепенно понимать, почему дробление или разрушение ДНК вызывает такие катастрофические повреждения в живой клетке. Сначала группе ученых из Нью-Йорка удалось убедительно доказать, что гены являются участками ДНК. Это открытие опровергло всеобщее убеждение в белковой природе наследственности. Но, как показало второе исследование, между ДНК и белками все-таки существует особая связь: ДНК отвечает за сборку белков, причем каждый из генов в ДНК содержит рецепт ровно одного белка. Иными словами, гены постоянно заняты сборкой белков, и именно таким образом они кодируют биологические признаки любого организма.

В сумме два этих открытия объясняли, в чем заключается вред радиации. При разрушении ДНК повреждаются гены; когда гены выходят из строя, нарушается синтез белков, а при дефиците белков гибнут клетки. Ученые пришли к такому выводу не сразу; важнейшая научная статья, в которой описано соотношение «один ген – один белок» была опубликована всего за несколько дней до бомбардировки Хиросимы. Однако к тому времени уже было известно достаточно, чтобы содрогнуться об одной мысли о ядерном оружии. Когда в 1946 году Герман Мёллер получил заслуженную Нобелевскую премию, в интервью газете «Нью-Йорк Таймс » он предрек, что «если бы выжившие после атомной бомбардировки могли увидеть, что станет с их потомками через тысячу лет, то они позавидовали бы мертвым».

Несмотря на весь пессимизм Мёллера, Ямагучи во что бы то ни стало хотел выжить – ради семьи. Он испытывал смешанные чувства относительно войны. Сначала был против нее, затем какое-то время поддерживал, впоследствии вновь склонялся к антивоенным настроениям, когда Япония начала проигрывать. Ямагучи опасался, что на его родной остров высадится неприятель – и что тогда станет с женой и сыном? В таком случае Ямагучи даже был готов дать им смертельную дозу снотворного, чтобы спасти от мучений. Спустя несколько часов после бомбардировки Хиросимы, он очень затосковал по родным. Поэтому, узнав, что из города один за другим уходят поезда, он собрал последние силы и решил побыстрее отправиться домой.

Город Хиросима расположен на множестве островов, и, чтобы попасть на вокзал, Цутому пришлось переправиться через реку. Все мосты обрушились или сгорели, поэтому Ямагучи, сжав волю в кулак, попытался перебраться на другой берег по жуткому месиву мертвых тел, устилавших всю реку. Он буквально полз, отпихивая с пути обгоревшие части тел. Но неожиданно в слое трупов обнаружилась огромная полынья, вынудившая его повернуть назад. Выше по течению реки Ямагучи добрался до железнодорожной эстакады, в которой устоял один из пролетов около сорока метров в длину. Он залез на эту конструкцию, а дальше по металлическому тросу добрался до берега и спустился на землю. Пробравшись через толпу, бедняга очутился на вокзале, а вскоре – и в вагоне поезда. К счастью, поезд тронулся достаточно скоро, Ямагучи был спасен. Поезд летел по рельсам всю ночь, пока, наконец, не прибыл в родной город Цутому – Нагасаки.

 

* * *

 

Физик, оказавшийся в Хиросиме, мог бы констатировать, что гамма-лучи искорежили ДНК Ямагучи за триллионные доли секунды. С точки зрения химика, самые драматичные события закончились бы за миллисекунду, – к этому моменту свободные радикалы уже успели бы изрешетить ДНК. Цитолог мог бы наблюдать за организмом уцелевшего несколько часов, отслеживая, как клетки пытаются залатать изорванную двойную спираль. Врач диагностировал бы у пострадавшего лучевую болезнь – головные боли, рвоту, внутренние кровотечения, отслоение кожи, малокровие – все эти симптомы проявляются в течение недели. Наибольшее терпение пришлось бы проявить генетику. Генетический ущерб, нанесенный жертвам атомных бомбардировок, проявляется спустя годы и даже десятилетия. По мрачному стечению обстоятельств, именно за эти десятилетия ученые смогли составить полную картину работы генетических механизмов, а также возникающих при этом сбоев. Можно сказать, что они наблюдали растянутый во времени непрерывный репортаж о разрушении ДНК.

Сегодня, изучая в ретроспективе эксперименты над ДНК и белками, проводившиеся в 1940-е годы, мы находим их очень убедительными. Однако в те годы лишь некоторые ученые смогли распознать, что именно ДНК является носителем генетической информации. Более веские доказательства на этот счет были получены в 1952 году вирусологами Альфредом Херши и Мартой Чейз. Они знали, что вирус инфицирует клетку, подменяя ее генетический материал своим. А поскольку вирусы, которые они изучали, состояли только из ДНК и белков, гены должны были находиться либо в ДНК, либо в белках. Альфред и Марта решили пометить вирусы радиоактивными изотопами серы и фосфора, а затем выпустить их в клеточную культуру. Соответственно, если бы генетическая информация передавалась через белок, то в инфицированных клетках обнаружилась бы радиоактивная сера. Но когда Херши и Чейз отделили зараженные клетки, они нашли там только радиоактивный фосфор. Это означало, что вирус внедряет в клетку именно свою ДНК.

Результаты своего исследования ученые опубликовали в 1952 году, окончив статью предостережением: «Описанные эксперименты не предполагают каких-либо иных выводов химического характера». Точно. Все ученые, которые к тому моменту еще занимались проблемой белковой наследственности, забросили свои прежние исследования и сосредоточились на изучении ДНК. Развернулась настоящая гонка – кому же первому удастся понять структуру ДНК? В апреле 1953 года, спустя всего год после выхода статьи Херши и Чейз, весь мир узнал о двух нескладных парнях, научных сотрудниках Кембриджского университета – Фрэнсисе Крике и Джеймсе Уотсоне (кстати, Уотсон ранее учился у Германа Мёллера). Крик и Уотсон впервые предложили термин «двойная спираль», который впоследствии стал легендарным.

Двойная спираль, описанная Уотсоном и Криком, состоит из двух длинных нитей, сплетающихся в единую правовращающую косичку. Поднимите правую руку и направьте большой палец в потолок. Теперь остальные пальцы у вас на правой руке согнуты в направлении против часовой стрелки; можно сказать, что спираль ДНК завивается вокруг них снизу вверх. Каждая нить состоит из двух главных цепей, которые удерживаются вместе парными нуклеотидными основаниями, входящими друг в друга плотно, как кусочки пазла. Угловатый аденин (А) сочетается с тимином (Т), изогнутый цитозин (Ц) – с гуанином (Г). Гениальная догадка Уотсона и Крика заключалась в том, что в силу такой взаимной дополнительности (комплементарности) парных оснований А – Т, Ц – Г одна нить ДНК может служить шаблоном для копирования другой. То есть, если одна сторона двойной спирали содержит нуклеотиды Ц – Ц – Г – А – Г – Т, то вторая должна иметь вид – Г – Г – Ц – Т – Ц – А. Система настолько проста, что всего за одну секунду можно скопировать сотни оснований ДНК.

Все это замечательно, но в то же время двойная спираль не выдала никакой информации о том, как именно гены ДНК формируют белки, – а ведь именно это важнее всего. Чтобы понять этот процесс, ученым пришлось тщательно исследовать «химического родственника» ДНК – молекулу РНК. Эта молекула похожа на ДНК, но в ней закручена лишь одна нить, и вместо тимина (T) находится урацил (У). Биохимики обратились к РНК, поскольку концентрация этой кислоты резко возрастает, когда клетки начинают вырабатывать белки. Но когда они принялись за поиски РНК внутри клеток, оказалось, что эта кислота неуловима, подобно исчезающему виду птиц; удавалось обнаружить лишь крохи, которые тут же пропадали. Понадобились годы усердных экспериментов, чтобы точно установить, что происходит, – как именно клетки преобразуют последовательность оснований ДНК в инструкции для РНК, при помощи которых затем создаются белки.

Сначала клетки осуществляют «транскрипцию» ДНК в РНК. Этот процесс похож на копирование самой ДНК тем, что одна из ее нитей служит шаблоном. Так, последовательность Ц – Ц – Г– А – Г – Т оснований ДНК превратилась бы в молекуле РНК в последовательность Г – Г – Ц – У – Ц – А (основание У встает вместо Т). После сборки такая цепочка РНК выходит за пределы ядра и направляется к особым образованиям, которые занимаются производством белков, – рибосомам. Поскольку молекула РНК передает сообщение от одной стороны к другой, ее называют информационной или матричной РНК (мРНК).

Построение белка (трансляция) начинается в рибосомах. По прибытии мРНК рибосома захватывает ее недалеко от окончания и выявляет всего лишь три звена цепочки (трипле т). В нашем примере был бы обнаружен триплет ГГЦ. После этого к работе приступает второй тип РНК – транспортная РНК (тРНК). Каждая молекула тРНК содержит две основные части: аминокислоту, прикрепленную к ней (груз, который предстоит передать), и триплет РНК, который выступает, подобно мачте корабля. Различные молекулы тРНК могут попытаться прикрепиться к выявленному триплету РНК, но это пройдет успешно лишь тогда, когда основания окажутся комплементарными. Таким образом, к триплету ГГЦ может присоединиться лишь тРНК с фрагментом ЦЦГ. И только после успешного соединения рибосома принимает груз – аминокислоту.

В этот момент молекула тРНК уходит, молекула мРНК сдвигается на три позиции и все начинается заново. Выявляется другой триплет, к которому стыкуется молекула тРНК с другой аминокислотой. Так занимает свое место вторая аминокислота. В конце концов, после множества шагов создается цепочка аминокислот – белок. А поскольку каждому триплету РНК соответствует одна и только одна аминокислота, информация должна в точности быть передана от ДНК к РНК, а затем белку. Этот процесс происходит в каждом живом существе. Введите одну и ту же молекулу ДНК в морскую свинку, лягушку, тюльпан, слизевик, дрожжи, американского конгрессмена – и вы получите одинаковые цепочки аминокислот. Поэтому не удивительно, что в 1958 году Фрэнсис Крик возвел процесс «ДНК → РНК → белок» в ранг центральной догмы молекулярной биологии[12].

И тем не менее догма Крика не объясняет всех нюансов в создании белка. С одной стороны, можно заметить, что из четырех оснований ДНК можно составить 64 различных триплета (4 × 4 × 4 = 64). В то же время эти триплеты кодируют всего лишь двадцать аминокислот, которые содержат наши тела. Почему?

В 1954 году физик Георгий Гамов основал «научный» клуб галстуков РНК (RNA Tie Club ). В частности, для того чтобы получить ответ на поставленный выше вопрос. Физик, который по совместительству занимается биологией, может выглядеть странно (Гамов тогда занимался радиоактивностью и теорией Большого взрыва), однако в этот клуб вступили и другие «инородные» ученые, вроде Ричарда Фейнмана. Но не только ДНК бросала интеллектуальный вызов. Многие физики были потрясены своей причастностью к созданию ядерных бомб. Казалось, что физика разрушает жизнь, а биология занимается ее восстановлением. Список участников клуба состоял из 24 человек, физиков и биологов, по одному на каждую аминокислоту, плюс четыре почетных члена по числу оснований ДНК. Уотсон и Крик были в числе членов клуба (Уотсон выступал в официальной роли Оптимиста, а Крик – в роли Пессимиста). Каждый участник щеголял зеленым галстуком (стоимостью 4 доллара), на котором золотым шелком была вышита спираль ДНК. Галстуки были выполнены на заказ одним из галантерейщиков Лос-Анджелеса. На канцелярских принадлежностях клуба был нанесен девиз: «Сделай или умри. Или даже не пытайся».

 

Участники клуба галстуков РНК щеголяют зелеными галстуками, на которых золотым шелком вышита спираль ДНК. Слева направо: Фрэнсис Крик, Александр Рич, Лесли И. Оргел, Джеймс Уотсон. Фото любезно предоставил Александр Рич

 

Несмотря на совместную интеллектуальную мощь, история клуба завершилась в некоторой степени глупо. Физиков зачастую притягивают проблемы повышенной сложности, и вот некоторые участники клуба с «физическим» складом ума (включая Крика, со степенью доктора философии) ринулись работать с ДНК и РНК, не осознав, насколько простым был процесс «ДНК → РНК → белок». Они сосредоточились главным образом на том, как ДНК хранит инструкции, и почему-то решили сначала, что ДНК должна скрывать свои инструкции в виде сложного кода – биологической криптограммы. Ничто так не увлекает компанию мальчишек, как закодированные сообщения. И тогда Гамов, Крик и другие участники принялись подобно компании десятилетних ребят с пачкой чипсов в руках за взлом этого шифра. Вскоре они уселись за рабочие столы и начали исписывать расчетами страницу за страницей. Воображение было удачно раскрепощено при помощи экспериментов. Они выдумали решения: достаточно мудреные, чтобы заставить Уилла Шортца улыбнуться – «ромбовидные коды», «треугольные коды», «коды в виде запятой», а также множество других, уже забытых. Эти коды пришлись бы по вкусу Управлению национальной безопасности: обратимые коды, коды со встроенными механизмами защиты от ошибок, коды, увеличивающие плотность хранения за счет перекрывающихся триплетов. Парням из Управления очень нравятся коды, которые используют анаграммы (то есть ЦАГ = АЦГ = ГЦА и др.). Такой подход выглядел обоснованным, поскольку после изъятия всех повторяющихся комбинаций число уникальных триплетов в точности равнялось двадцати. Другими словами, ученые, казалось бы, нашли связь между числами 20 и 64 – причину, по которой природа просто обязана использовать 20 аминокислот.

По правде говоря, во всем этом было слишком много нумерологии. Неоспоримые биохимические факты вскоре умерили пыл взломщиков кода, показав, что не существует убедительной причины для того, чтобы молекула ДНК кодировала именно 20 аминокислот, а не 19 или 21. Не нашлось также веских оснований (как надеялись некоторые) для того, чтобы каждому триплету соответствовала бы определенная аминокислота. Система в целом оказалась случайной, внедренной в клетки миллиарды лет назад, и теперь настолько укоренилась, что ее невозможно изменить – своего рода порядок расположения букв на клавиатуре компьютера. Более того, в РНК не используется никаких забавных анаграмм или алгоритмов коррекции ошибок, а уж тем более нет стремления к увеличению свободного пространства. В действительности наш код сводится к расточительному излишеству: два, четыре и даже шесть триплетов РНК могут представлять одну и ту же аминокислоту[13]. Некоторые биокриптографы чуть позже испытали досадное чувство, когда сравнили природные коды с лучшими из кодов клуба галстуков РНК. Эволюционный процесс не показался таким уж мудрым.

Однако вскоре досада растворилась. Разгадка кода ДНК/ РНК наконец позволила ученым объединить две разделенные области генетики, которые рассматривали ген как информацию и ген как химическое вещество. Мишер и Мендель впервые оказались крепко объединены. А то, что код ДНК построен так небрежно, в некоторых случаях оказывается только выигрышным. Выдуманные коды обладают приятными свойствами, но чем причудливее становится код, тем больше вероятность того, что он даст сбой. И какими бы небрежными ни были наши коды, они прекрасно справляются с одной задачей: поддержание жизни и минимизация повреждений, вызванных мутациями. Именно на эту замечательную способность и пришлось положиться Цутому Ямагучи, а также многим другим, в августе 1945 года.

 

* * *

 

Ранним утром 8 августа Ямагучи в обморочном состоянии приехал в Нагасаки и побрел домой. Его семья решила, что он погиб, и ему пришлось убеждать свою жену в том, что он не призрак, показав ей свои ступни (согласно японским верованиям у призраков нет ступней). Этот день он провел в покое, то приходя в сознание, то вновь теряя его. Но при этом он твердо решил на следующий день отправиться в штаб-квартиру фирмы «Мицубиси», которая находилась в Нагасаки.

Он прибыл туда незадолго до 11 часов утра. С перевязанными руками и лицом он изо всех сил старался рассказать своим коллегами о масштабе атомной войны. Однако его начальник не позволил запугать себя, скептически назвав весь рассказ враньем. «Ты ведь инженер, – рявкнул он. – Выполни расчеты. Как может одна бомба разрушить целый город?» Замечательные последние слова. Как только наш нострадамус умолк, комната стала наполняться белым светом. Жар стал терзать кожу Ямагучи, а сам он рухнул на пол офиса.

«Я подумал, – вспоминал он позже, – что это грибовидное облако пришло за мной из Хиросимы».

80 тысяч человек погибли в Хиросиме и еще 70 тысяч – в Нагасаки. Среди нескольких сотен тысяч уцелевших жертв всего лишь около 150 человек (что подтверждается свидетельствами) были в обоих городах в эти дни, а совсем небольшая их часть оказалась в пределах зоны взрыва – внутри круга диаметром около двух с половиной километров с мощным радиоактивным излучением. Некоторые хибакуся (nijyuu hibakusha ), дважды облученные, но уцелевшие, могут поведать такое, от чего даже камни зарыдают. (Одному из таких уцелевших удалось пробраться внутрь своего разрушенного дома в Хиросиме, собрать обугленные кости своей жены и поместить их в умывальную раковину, чтобы затем доставить родителям жены, жившим в Нагасаки. Супруг с умывальной раковиной под мышкой с трудом добрался до улицы, на которой жили родители жены, как вдруг вновь утренний воздух притих, а небо растворилось в ослепительной белизне…) Однако среди всех двойных жертв японское правительство официально признает только одного хибакуся – Цутому Ямагучи.

Вскоре после взрыва в Нагасаки Ямагучи оставил своего обомлевшего начальника и коллег, а затем забрался на один из наблюдательных пунктов, расположенный на холме неподалеку. Под гнетущей завесой грязных облаков он увидел воронку на месте родного города и своего дома. Начался черный радиоактивный дождь, и Ямагучи изо всех сил поспешил спуститься с холма, опасаясь худшего. Но его жена Хисако и сын Кацутоси были в бомбоубежище и остались целы.

Когда радость от встречи с ними утихла, Ямагучи стал чувствовать себя еще хуже, чем раньше. Всю следующую неделю он фактически пролежал в убежище, страдая, как Иов. Его волосы выпали. Нарывы лопнули. Его постоянно тошнило. Лицо опухло, а одно ухо перестало слышать. Обожженная кожа спадала хлопьями, а под ней, подобно китовому мясу, алела плоть и причиняла боль. Как и Ямагучи, в эти месяцы страдали многие, и генетики стали опасаться этой затянувшейся агонии, поскольку постепенно стали проявляться признаки мутаций.

Ученые уже полвека знали о мутациях, но только исследования процесса «ДНК → РНК → белок», проводимые группой клуба галстуков РНК и другими, в точности установили, как устроены эти мутации. В большинстве мутаций встречаются «опечатки» – случайные замены оснований ДНК при ее репликации: например, триплет ЦАГ может превратиться в ЦЦГ. «Тихие» мутации не причиняют вреда, поскольку код ДНК является избыточным. Триплеты, следующие перед мутированным и после него, вызовут одну и ту же аминокислоту, и поэтому общий эффект можно сравнить с вариантами написания слова, вроде «карате» вместо «каратэ». Но если триплеты ЦАГ и ЦЦГ приведут к разным аминокислотам («бессмысленная» мутация), то такая ошибка может нарушить структуру белка и искалечить его.

Гораздо хуже «безумные» мутации. При создании белков клетки будут продолжать трансляцию РНК в аминокислоты до тех пор, пока не встретится один из трех «завершающих» триплетов (например, УГА), который останавливает процесс. «Безумная» мутация случайно превращает нормальный триплет в один из таких стоп-сигналов, который обрывает белок раньше времени и, как правило, выводит его из строя. Мутации могут также отменить стоп-сигнал, и тогда белок будет расти все дальше и дальше. Мутация, которая подобна черной мамбе, – мутация сдвига рамки считывания – не содержит «опечаток». Вместо этого исчезает какое-либо основание или происходит внедрение лишнего. А поскольку клетки считывают РНК последовательными группами по три основания, такая вставка или удаление искажают не только данный триплет, но и все последующие, вызывая многоступенчатую катастрофу.

Обычно клетки моментально исправляют простые «опечатки», но если что-либо пойдет не так (и ведь обязательно пойдет), дефект может навсегда зафиксироваться в ДНК. Каждый живущий ныне человек на деле родился с десятками мутаций, которых избежали его родители. Некоторые из этих мутаций могли бы привести к летальному исходу, если бы у каждого из нас не было двух копий каждого гена, по одному от каждого родителя. Если один из генов работает неправильно, его может подменить второй. Тем не менее все живые организмы с возрастом продолжают накапливать мутации. Небольшие существа, которые обладают высокой температурой тела, особо подвержены риску: на молекулярном уровне тепло является интенсивным движением, а чем сильнее это движение, тем более вероятна возможность ошибки в извивах ДНК при ее копировании. Млекопитающие являются достаточно крупными созданиями и, к счастью, поддерживают постоянную температуру тела, но и они становятся жертвами других мутаций. Когда в цепочке ДНК оказываются рядом два основания Т, ультрафиолетовое излучение может соединить их под неправильным углом, в результате чего образуется петля в ДНК. Такие дефекты могут полностью убить клетку или вывести ее из нормального режима. По сути, все животные (и растения) обладают специальными ферментами, которые расправляют петли T-оснований, но млекопитающие в процессе эволюции лишились таких веществ – именно поэтому млекопитающие подвержены солнечным ожогам.

Помимо самопроизвольных мутаций ДНК может быть повреждена также и внешними факторами, которые называются мутагенами. Некоторые мутагены причиняют больший урон, чем радиоактивность. Опять же, радиоактивные гамма-лучи приводят к образованию свободных радикалов, которые расщепляют фосфатно-сахарную основу ДНК. Теперь ученые знают, что если разорвется лишь одна из нитей двойной спирали, клетки способны с легкостью исправить повреждение, зачастую в течение часа. У клеток есть молекулярные «ножницы», с их помощью вырезается искалеченный участок ДНК, после чего в ход идут ферменты, которые прочесывает неповрежденную нить и добавляют в каждой точке комплементарные основания А, Ц, Г или Т. Процесс восстановления быстр, прост и точен.

Двойная спираль разрывается реже, но последствия этого более страшные. Двойные разрывы напоминают наспех ампутированные конечности: с обеих концов разорванной ДНК выступают остатки одиночной спирали. В клетках есть две практически одинаковые копии каждой хромосомы. Если в одной из них произойдет разрыв двойной спирали, клетки способны сравнить испорченные участки с другой хромосомой (будем надеяться, неповрежденной) и выполнить исправление. Но процесс этот трудоемкий, и если клетки обнаруживают, что вокруг есть повреждения, для которых необходимо быстрое восстановление, то зачастую происходит просто сцепление выступающих обрывков спирали по нескольким выровненным основаниям (даже если остальные не выровнены), а отсутствующие основания спешно заполняются. Неверно определенные основания могут вызвать ужасающую мутацию сдвига рамки считывания – и таких неверных «угадываний» предостаточно. Клетки, которые восстанавливают разрывы двойной спирали, совершают неверные действия приблизительно в 3000 раз чаще, чем при обычном копировании ДНК.

Хуже того, радиоактивность способна уничтожать фрагменты ДНК. Высокоорганизованным существам приходится сворачивать многочисленные витки ДНК, образуя маленькие ядра; человеческий рост (чуть менее двух метров) сжался бы до размеров меньше двух тысячных долей сантиметра. Такое интенсивное сдавливание часто приводит к тому, что ДНК становится похожей на запутанный телефонный шнур: спираль пересекает саму себя или многократно изгибается. Если гамма-лучи проникнут в ДНК и разорвут ее рядом с одним из таких пересечений, то появится множество свободных концов, расположенных близко друг к другу. Клетки «не знают», как были выстроены исходные спирали (у них нет памяти), и поэтому, стремясь спешно исправить повреждение, они иногда скрепляют то, что должно быть отдельными спиралями. Так вырезается и фактически уничтожается промежуточный участок ДНК.

Что же происходит в результате таких мутаций? Клетки, которые подавлены большим числом повреждений ДНК, могут почувствовать неладное и уничтожить себя, чтобы не жить с нарушениями функций. В небольших дозах такое самопожертвование щадит тело, но если одновременно умрет слишком много клеток, то могут отключиться целые системы органов. В сочетании с интенсивными ожогами такие отключения органов вызвали многочисленные случаи смертей в Японии, и некоторые из жертв, которые не умерли сразу же, вероятно, желали бы такого исхода. Те, кому удалось выжить, рассказывают о том, что ногти у людей отпадали словно высохшая скорлупа. Они вспоминают «обугленные куклы» ростом с человека, которые были свалены штабелями в проходах между домами. Кто-то вспоминает человека, ползущего на двух культях и держащего обугленного ребенка вниз головой. Кому-то из памяти появляется женщина без сорочки, с пылающими, как «плоды граната», грудями.

Ямагучи во время своих мучений в бомбоубежище – безволосый, обожженный, лихорадочный, наполовину глухой – чуть было не присоединился к этому списку погибших. И только благодаря преданному уходу со стороны семьи ему удалось выкарабкаться. Некоторым ранам все еще требовались повязки, причем на несколько лет. Но в целом его удел Иова превратился в судьбу Самсона: раны большей частью зажили, сила возвратилась, волосы отросли заново. Он снова устроился на работу, сначала в «Мицубиси», а затем в качестве учителя.

Но до полного избавления было еще далеко – теперь Ямагучи оказался лицом к лицу с более коварной и настойчивой угрозой. Если радиоактивность и не убивает клетки моментально, она может вызвать мутации, которые приведут к раку. Эта зависимость может показаться нелогичной, так как мутации обычно повреждают клетки, но клетки опухоли начинают буйно раз растаться, делясь и увеличиваясь в количестве с ужасающей быстротой. В действительности у всех здоровых клеток есть гены, которые играют роль регулятора для двигателя, снижая «обороты» и поддерживая метаболизм в норме. Если мутация выводит регулятор из строя, то клетка может не увидеть веской причины для того, чтобы убить себя, и в итоге (особенно если другие гены, например те, которые регулируют скорость деления клеток, также повреждены) она начинает поглощать ресурсы, а также своих соседей.

Многие из уцелевших жителей Хиросимы и Нагасаки получили такие дозы радиации (причем за один прием), которые в сто раз превосходят радиационный фон, поглощаемый человеком в обычных условиях за год. И чем ближе они были к эпицентру взрыва, тем больше повреждений и мутаций возникло в их ДНК. Как и ожидалось, клетки, которые быстро делятся, быстрее распространяют и повреждения в ДНК, в результате чего в Японии тут же возникла вспышка лейкемии, ракового заболевания белых кроветворных клеток. Эпидемия лейкемии пошла на убыль спустя 10 лет, но тем временем набрали силу другие заболевания: рак желудка, толстой кишки, легких, мочевого пузыря, щитовидной железы, молочных желез.

Если участь взрослых людей была незавидной, то еще не родившиеся и пребывающие в утробе оказались намного более уязвимыми: любая мутация или повреждение многократно повторялись в их клетках. Было много выкидышей, если возраст плода составлял менее четырех недель, а у тех, кто выжил и появился на свет в конце 1945 – начале 1946 года, обнаружилось множество врожденных дефектов, таких как маленькие головы или несформированный мозг. (Самый высокий коэффициент интеллекта IQ среди таких неполноценных детей был равен 68.) Но после всего этого в конце 40-х годов многие из 250 тысяч японцев-хибакуся снова стали заводить детей, передавая им свою облученную ДНК.

Специалисты по радиации мало что могли посоветовать насчет того, чтобы хибакуся имели детей. Несмотря на большое число заболеваний раком печени, груди или крови, раковые ДНК родителей не смогли бы передаться детям, поскольку дети наследуют только те ДНК, которые находятся в сперматозоидах и яйцеклетках. Конечно же, такие молекулы ДНК тоже могли мутировать, возможно, скрытым образом. Но фактически никто не измерял степень урона, приносимого радиацией в масштабах Хиросимы, и поэтому ученым пришлось строить предположения. Физик-нонконформист Эдвард Теллер, «отец» водородной бомбы (а также участник клуба галстуков РНК), высказал предположение о том, что малые дозы радиации могли бы пойти человеку на пользу: кто знает, а вдруг мутации «разглаживают» наши геномы? Но даже среди более осторожных ученых далеко не каждый предвидел сказочные уродства и двухголовых детей. Герман Мёллер опубликовал в газете «Нью-Йорк Таймс» свои пророчества о грядущих бедах Японии, но его идеологическое противостояние Теллеру и другим ученым, вероятно, придало комментарию другой тон. (В 2011 году некий токсиколог, после внимательного прочтения ныне рассекреченной переписки между Мёллером и его коллегой, обвинил их обоих в том, что они лгали правительству об угрозе малых доз радиации для ДНК, а затем подтасовывали данные и строили дальнейшие исследования так, чтобы оправдать себя. Другие историки спорят с такой интерпретацией переписки.) Когда дело дошло до высоких уровней радиоактивности, Мёллер немного отступил и смягчил свои суровые ранние предсказания. Большинство мутаций, рассуждал он, какими бы пагубными они ни были, окажутся рецессивными. А шансы на то, что у обоих родителей есть повреждения в одном и том же гене, довольно невелики. И тогда, по крайней мере у детей, здоровые гены матери «прикроют» любые недостатки, которые есть в генах отца, и наоборот.

Но опять-таки, никто не знал всего с уверенностью, и над каждым будущим ребенком в Хиросиме и Нагасаки в течение десятилетий был подвешен дамоклов меч, усиливавший обычные тревоги тех, кто готовился стать родителями. В удвоенной мере это должно было относиться к Ямагучи и его жене, Хисако. Они оба в начале 50-х годов достаточно восстановили свои силы, для того чтобы завести детей, вне зависимости от долгосрочных прогнозов. Рождение первой дочери, Наоко, поначалу подтверждало мнение Мёллера, поскольку у нее не наблюдалось видимых дефектов или уродств. Затем родилась вторая дочь, Тосико, которая также оказалась здоровой. Но, будучи рожденными в добром здравии, обе дочери Ямагучи оказались болезненными в детстве и во взрослом возрасте. Предполагают, что они унаследовали генетически подорванную иммунную систему от дважды облученного отца и облученной матери.

Если же говорить о Японии в целом, то среди детей хибакуся эпидемия раковых заболеваний и врожденных дефектов, которые долгое время внушали страх, так и не возникла. На поверку ни одно из крупномасштабных исследований не выявило признаков того, что среди таких детей наблюдается большее количество каких-либо заболеваний или даже большее число мутаций. Возможно, Наоко и Тосико унаследовали генетические пороки; проверить это невозможно, но на интуитивном и эмоциональном уровне это выглядит правдоподобно. Однако в подавляющем большинстве случаев генетические дефекты не передались по наследству следующему поколению[14].

Более того, люди, которые были напрямую подвержены радиоактивному облучению, оказались более живучими, чем ожидали ученые. Сын Ямагучи, Кацутоси, прожил после взрыва в Нагасаки еще более пятидесяти лет и умер от рака в 58-летнем возрасте. Хисако прожила намного дольше, скончавшись в 2008 году в возрасте 88 лет от рака печени и почки. Да, возможно плутониевая бомба в Нагасаки стала причиной обоих заболеваний. Но в таком возрасте заболеть раком вполне вероятно и по другим причинам. Сам же Ямагучи, несмотря на двойное облучение в Хиросиме и Нагасаки в 1945 году, прожил еще 65 лет и скончался от рака желудка в 2010 году в возрасте 93 лет.

Никто с уверенностью не может сказать, почему Ямагучи оказался исключением – почему он столько прожил после двойного облучения, в то время как другие умерли от сравнительно малых доз радиации. Ямагучи никогда не подвергался генетической проверке (по крайней мере, исчерпывающей), но даже если бы она и проводилась, медицине не хватило бы знаний, чтобы дать заключение. Мы можем лишь строить науко образные догадки. Во-первых, очевидно, что его клетки проделали адскую работу по восстановлению разорванных двойных спиралей ДНК и дублированию погибших. Возможно, у него были более продуктивные восстанавливающие белки, которые работали быстрее или эффективнее, или же некие комбинации восстанавливающих генов, которые действовали особенно хорошо при совместной работе. Во-вторых, мы можем также предположить, что, несмотря на наличие некоторых неизбежных мутаций, они не вывели из строя ключевые внутриклеточные структуры. Может быть, мутации коснулись тех участков ДНК, которые не отвечают за кодирование белков. В-третьих, возможно, что в его случае происходили лишь «тихие» мутации, при которых триплет ДНК изменяется, а аминокислота, вследствие избыточности, – нет. (В таком случае его спас тот самый «сляпанный» код, который разочаровал участников клуба галстуков РНК.) И наконец, в-четвертых, Ямагучи, по-видимому, до последних дней своей жизни смог избежать каких-либо серьезных повреждений в своих генетических регуляторах ДНК, которые сдерживают развитие потенциальных опухолей. Его могла уберечь любая из этих причин (или все они, вместе взятые).

А возможно – и это в равной степени правдоподобно, он и не был особенным человеком с точки зрения биологии. Может быть, многие другие смогли бы выжить, подобно ему. И, осмелюсь сказать, некоторая надежда на это существует. Даже самые смертоносные виды оружия, когда-либо изобретенные, которые способны мгновенно убить десятки тысяч людей, которые атакуют и терзают биологическую сущность людей, их ДНК, не уничтожают народ. И они не способны также отравить следующее поколение: тысячи детей – потомки тех, кто уцелел после атомного взрыва, – живут и здравствуют сегодня. После более чем трех миллиардов лет облучения ДНК космическими лучами и солнечной радиацией, а также повреждений разного характера природа выработала свои защитные методы, которые позволяют восстановить и сохранить целостность ДНК. И не только той «догматической» ДНК, сообщения которой транскрибируются в РНК и транслируются в белки, но и всех видов ДНК, включая те, утонченный язык и математические структуры которых ученые только начинают исследовать[15].

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.