2) О∙2 +1е- → О2-2 пероксидный анион (:О::О:), он быстро протонируется с образованием перекиси водорода О2-2 + 2Н+ → Н2О2 (Н:О::О:Н)
3) Н2О2 + 1е- → НО∙ + ОН- гидроксильный радикал, ОН- протонируется с образованием воды ОН- + Н+ → Н2О
4) ОН∙ + 1е- → Н2О (Н:О:Н)
Ферментативные реакции образования АФК
Электроны, необходимые для образования АФК могут давать ЦПЭ. Утечка е- из ЦПЭ на кислород является основным путем образования АФК в большинстве клеток:
В цепи окислительного фосфорилирования Q принимая 1 е- превращается в свободный радикал семихинон НQ∙, который при реоксигенации ишемических тканей может непосредственно взаимодействовать с кислородом, образуя супероксидный анион-радикал: HQ· + O2 → Q+ О∙2 + H+;
в монооксигеназных реакциях е- с цитохрома Р450 переходит на кислород с образованием супероксидного анион-радикала, который иногда теряется с активного центра.
Аэробные дегидрогеназы (ФАД-зависимые оксидазы) переносят е- и Н+ с субстрата на кислород с образованием перекиси водорода. Примеры таких оксидаз — оксидазы аминокислот, супероксид дисмутаза, оксидазы, локализованные в пероксисомах.
Неферментативные реакции образования АФК
Электроны, необходимые для образования АФК могут давать:
1).Металлы переменной валентности. Наличие в клетках Fe2+ или ионов других переходных металлов катализирует образования АФК. Например, в эритроцитах окисление иона железа гемоглобина способствует образованию супероксидного анион-радикала.
Hb(Fe2+) + O2 → MetHb(Fe3+) + О∙2
H2O2 + Fe2+ → Fe3+ + HO- + HO· (реакция Фентона)
HOCl + Fe2+ → Fe3+ + Cl- + HO· (реакция Осипова)
2). Радикалы. АФК, обмениваясь электроном, легко переходят друг в друга: О∙2 + Н2О2 → О2 + НО∙ + ОН-
АФК также могут образовываться в организме неферметативно при гомолитическом разрыве связей под действием ионизирующего излучения. Ионизирующее излучение вызывает например, радиолиз воды с образованием Н2; Н2О2 и свободных радикалов: Н·, НО∙, О·. Это процесс в основном происходит на поверхности тела - в коже (понятие фотостарения).
Свойства активных форм кислорода
Кислородные радикалы, обладая высокой активностью, разрушают органические молекулы в реакциях свободно-радикального окисления (СРО). Большая часть этих реакций протекает с полиненасыщенными жирными кислотами липидов, и называется перекисным окислением липидов (ПОЛ). Реакции ПОЛ являются цепными.
Наиболее химически активным соединением является гидроксильный радикал - сильнейший окислитель. Время его жизни очень короткое (1 миллиардная доля секунды), но за это время он мгновенно вступает в цепные окислительные реакции в месте своего образования.
Супероксидный анион-радикал и перекись водорода более стабильные вещества, могут диффундировать от места образования, проникать через мембраны клеток. Однако, перекись водорода способствует образованию гидроксильного радикала по следующей реакции:
Fe2+ + Н2О2 → Fe3+ + НО∙ + ОН-
Использование активных форм кислорода в организме
1.Иммунная система. АФК используются фагоцитарными клетками - тканевыми макрофагами, моноцитами и гранулоцитами крови для разрушения бактерий, вирусов и онкоклеток.
Фагоциты с участием НАДФН2-оксидазы выделяют супероксидный анион-радикал: НАДФН2 + 2O2 → НАДФ+ + 2О∙2 + 2Н+
Под действием супероксиддисмутазы (СОД) супероксидный радикал превращается в перекись водорода: 2О∙2 + 2H+ → H2O2+ O2
Под действием миелопероксидазы H2O2, превращается в гипохлорит – соединение, разрушающее стенки бактериальных клеток: H2O2 + Cl- → H2O + ClO-.
При дефиците в клетках СОД, ферритина, а в плазме церулоплазмина, трансферрина активируются альтернативные реакции:
Fe3+ + О∙2 → Fe2+ + O2
Fe2+ + H2O2 → Fe3+ + НО∙ + ОН-
Fe2+ + ClO- + H+ → Fe3+ + Cl- + НО∙
Фактор некроза опухоли
2.Поддержание гомеостаза.
Эйказаноиды – медиаторы воспаления
3.Внутриклеточноепищеварение. В пероксисомах образуются АФК. Когда пероксисомы сливаются с фагосомами, АФК обеспечивают внутриклеточное пищеварение.