42Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемогопризнака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.
При аутосомном наследовании признак характеризуется равной вероятностью проявления у лиц обоих полов. Различают аутосомно-доминантное и аутосомно-рецессивное наследование.
При аутосомно-доминантном наследовании доминантный аллель реализуется в признак как в гомозиготном, так и в гетерозиготном состоянии. При наличии хотя бы у одного родителядоминантного признака последний с разной вероятностью проявляется во всех последующих поколениях. Однако для доминантных мутаций характерна низкая пенетрантность. В ряде случаев это создает определенные трудности для определения типа наследования.
При аутосомно-рецессивном наследовании рецессивный аллель реализуется в признак в гомозиготном состоянии. Рецессивные заболевания у детей встречаются чаще при браках между фенотипически нормальными гетерозиготными родителями. У гетерозиготных родителей (Аа х Аа) вероятность рождения больных детей (аа) составит 25%, такой же процент (25%) буду здоровы (АА), остальные 50% (Аа) будут также здоровы, но окажутся гетерозиготными носителями рецессивного аллеля. В родословной при аутосомно-рецессивном наследовании заболеваниеможет проявляться через одно или несколько поколений.
Интересно отметить, что частота появления рецессивного потомства значительно повышается при близкородственных браках, так как концентрация гетерозиготного носительства у родственников значительно превышает таковую в общей массе населения.
Сцепленное с полом , наследование характеризуется, как правило, неравной частотой встречаемости признака у индивидуумов разного пола и зависит от локализации соответствующего гена в Х- или Y-хромосоме. В X- и Y-хромосомах человека имеются гомологичные участки, содержащие парные гены. Гены, локализованные в гомологичных участках, наследуются так же, как и любые другие гены, расположенные в аутосомах. По-видимому, негомологичные гены имеются и в Y-хромосоме. Они передаются от отца к сыну и проявляются только у мужчин (голандрический тип наследования) .
У человека в Y-хромосоме находится ген, обусловливающий дифференцировку пола. В Х-хромосоме имеется два негомологичных участка, содержащих около 150 генов, которым нет аллельных в Y-хромосоме. Поэтому вероятность проявления рецессивного аллеля у мальчиков более высока, чем у девочек. По генам, локализованным в половых хромосомах, женщина может быть гомозиготной или гетерозиготной. Мужчина, имеющий только одну Х-хромосому, будет гемизиготным по генам, которым нет аллелей в Y-хромосоме.
43Близнецы́ — дети одной матери, развившиеся в течение одной беременности и появившиеся на свет в результате одних родов практически одновременно.
44Характерные изменения биохимических показателей, выявляемые при той или иной наследственной патологии, служат постоянным, а иногда и единственным признаком заболевания. Кроме того, отклонения в биохимических параметрах, как правило, предшествуют возникновению клинических симптомов, и существенно не зависят от клинико-генетического полиморфизма, обусловливающего вариабельность заболевания по степени тяжести и времени начала манифестации. Таким образом, биохимические параметры можно считать наиболее информативным описанием фенотипа. Подтверждением этого являются биохимические показатели гетерозигот, значения которых часто занимают промежуточное положение между значениями у нормальных и патологических гомозигот: например, гетерозиготные носители рецессивного аллеля фенилкетонурии симптомов заболевания не имеют, но реагируют на введение фенилаланина более сильным повышением концентрации этой аминокислоты в плазме, чем нормальные гомозиготы. К тому же не для всех наследственных заболеваний обнаружен молекулярно-генетичсский дефект или имеются возможности для его выявления. В связи с этим, биохимические методы играют важнейшую роль в диагностике наследственных заболеваний, позволяя подтверждать диагноз в случае атипичной клинической картины, проводить доклиническую диагностику и начинать лечение на ранних стадиях заболевания, выявлять гетерозиготных носителей, дифференцировать генетически различные формы болезни со сходной клинической картиной. Результаты диагностики гетерозиготного посительства биохимическими методами могут быть использованы в практике медико-генетического консультирования при расчетах риска рождения ребенка с наследственным заболеванием на основе вероятностных подходов. Предметом биохимической диагностики могутбыть различные классы органических и неорганических веществ (аминокислоты, углеводы, липиды, мукополисахариды, ионы металлов и др.) и их метаболиты, концентрация и отклонения в активности ферментов. Универсальность биохимической диагностики состоит в том, что исследовать этими методами можно любую ткань или секрет организма (мочу, пот, кровь, слюну, мышцы и др.). Это обусловливает многообразие биохимических методов и необходимость их непрерывного совершенствования.
45Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.
Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов,лекарственных препаратов и др.
В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом:
22 пар аутосом и одной пары половых хромосом (XX — у женщин, XY — у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применениеэтих методов лежит в основе составления карт хромосом человека.
Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.
При цитологических исследованиях интерфазных ядер со- матических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизацииодной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.
Выявление многих наследствен- ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.
46Кариотипирование, или цитогенетическое исследование позволяет выявить отклонения в структуре и числе хромосом, которые могут стать причиной бесплодия, другой наследственной болезни и рождения больного ребенка.
Каждый организм характеризуется определенным набором хромосом, который называется кариотипом. Кариотип человека состоит из 46 хромосом – 22 пары аутосом и две половые хромосомы. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). В каждой хромосоме находятся гены, ответственные за наследственность Кариотипирование позволяет обнаружить наследственные заболевания, связанные с изменением количества хромосом, их формы, дефектом отдельных генов. К таким болезням относятся синдромы Дауна, Эдвардса и Патау; синдром «кошачего крика», разнообразные ферментопатии (болезни обмена веществ) и многие другие.
XX (кариотип женщины) 46,XY (кариотип мужчины)
Существует два основных типа этого исследования: • изучение хромосом клеток крови пациентов и • пренатальное кариотипирование, то есть исследование хромосом плода.
Известно много заболеваний, причина которых - нарушение количества и/или строения хромосом, например, нарушения менструального цикла, выкидыши, бесплодие, уродства, умственная отсталость, нарушения иммунитета и сердечной деятельности.
Существуют международные стандарты, рекомендующие исследование хромосом в следующих случаях: • наличие хромосомной патологии в семье или у родственников, • привычное невынашивание беременности, • возраст беременной женщины более 35 лет (1 случай из 30 родов - с генетической патологией) • оценка мутагенных воздействий (радиационных, химических и др.).
47Тельце Барра (X-половой хроматин) — свёрнутая в пло́тную (гетерохроматиновую) структуру неактивная X-хромосома, наблюдаемая в интерфазных ядрах соматических клеток самок плацентарных млекопитающих, включая человека. Хорошо прокрашивается осно́вными красителями[1].
Из двух X-хромосом генома любая в начале эмбрионального развития может инактивироваться, выбор осуществляется случайно. У мыши исключением являются клетки зародышевых оболочек, также образующихся из ткани зародыша, в которых инактивируется исключительно отцовская X-хромосома[2].
Таким образом, у самки млекопитающего, гетерозиготной по какому-либо признаку, определяемому геном X-хромосомы, в разных клетках работают разные аллели этого гена (мозаицизм). Классическим видимым примером такого мозаицизма является окраскачерепаховых кошек — в половине клеток активна X-хромосома с «рыжим», а в половине — с «чёрным» аллелем гена, участвующего в формировании меланина. Коты черепаховой окраски встречаются крайне редко и имеют две X-хромосомы (анеуплоидия)[3].
У людей и животных с анеуплоидией, имеющих в геноме 3 и более X-хромосом (см., напр., синдром Клайнфельтера), число телец Барра в ядре соматической клетки на единицу меньше числа X-хромосом.
48С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Этот метод используют и для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.
При статистической обработке материала, получаемого при обследовании группы населения по интересующему исследователя признаку, основой для выяснения генетической структуры популяции является закон генетического равновесия Харди — Вайнберга. Он отражает закономерность, в соответствии с которой при определенных условиях соотношение аллелей генов и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции (см. разд. 10.2.3, т.2). На основании этого закона, имея данные о частоте встречаемости в популяции рецессивного фенотипа, обладающего гомозиготным генотипом (аа), можно рассчитать частоту встречаемости указанного аллеля (а) в генофонде данного поколения. Распространив эти сведения на ближайшие поколения, можно предсказать частоту появления в них людей с рецессивным признаком, а также гетерозиготных носителей рецессивного аллеля.
49Гаметогенез или предзародышевое развитие — процесс созревания половых клеток, или гамет. Поскольку в ходе гаметогенеза специализация яйцеклеток и сперматозоидовпроисходит в разных направлениях, обычно выделяют оогенез и сперматогенез
Гаметогенез закономерно присутствует в жизненном цикле ряда простейших, водорослей, грибов, споровых и голосеменных растений, а также многоклеточных животных. В некоторых группах гаметы вторично редуцированы (сумчатые и базидиевые грибы, цветковые растения). Наиболее подробно процессы гаметогенеза изучены у многоклеточных животных.
50Половые клетки
(синоним гаметы)
специализированные клетки, обладающие гаплоидным набором хромосом и обеспечивающие при половом размножении передачу наследственной информации от родителей к потомству. П. к. происходят от диплоидных клеток в результате редукции числа хромосом при эволюции полового процесса. У большинства многоклеточных организмов первичные П. к. (гоноциты) обособляются вследствие первых делений в начале эмбриогенеза из экто- или энтодермы, а затем различными путями перемещаются в формирующиеся половые железы. У особей мужского пола в половых железах образуются мужские П. к., или сперматозоиды, а у женского —яйцеклетки. Организм с истиннымГермафродитизмом продуцирует оба типа П. к. Процесс развития П. к. рассматривается как начальный этап Онтогенеза и называется гаметогенезом, образование сперматозоидов — сперматогенезом, а яйцеклеток — оогенезом. Зрелые половые клетки возникают в процессе гаметогенеза, который условно подразделяют на 4 периода — размножение, рост, созревание и формирование (рис.1). В периоде размножения диплоидные клетки сперматогонии и оогонии (предшественники гамет) несколько раз делятся митотически, обеспечивая нарастание числа будущих П. к. Интенсивное размножение особенно характерно для сперматогонии. В периоде роста происходит увеличение размеров клеток, сопровождающееся накоплением в них питательных веществ, РНК, ряда структурных белков. Значительный рост клеток ярко выражен в оогенезе. Основным содержанием периода созревания является мейоз, в результате которого из каждой диплоидной клетки-предшественницы образуется 4 клетки с гаплоидным набором хромосом. При сперматогенезе эти клетки одинаковы по размеру и позже становятся сперматозоидами, а при оогенезе мейоз обеспечивает неравномерное деление цитоплазмы. В результате лишь одна гаплоиднаяклетка из четырех становится яйцеклеткой, способной к оплодотворению, а три другие представляют собой редукционные тельца, содержащие избыток хроматина и в конечном счете погибающие. Кроме обеспечения гаплоидности мейоз приводит также к возникновению качественного многообразия половых клеток. В профазе первого мейотического деления гомологичные хромосомы отцовского и материнского происхождения, спирализуясь, сближаются попарно соответствующими друг другу участками (так называемая конъюгация), образуя биваленты. При этом отдельные хроматиды переплетаются между собой и могут разрываться в аналогичных участках.
51Онтогене́з (от греч. οντογένεση: ον — существо + γένεση — происхождение, рождение) — индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом, от оплодотворения (при половом размножении) или от момента отделения от материнской особи (прибесполом размножении) до конца жизни.
У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.
У семенных растений к эмбриональному развитию относят процессы развития зародыша, происходящие в семени.
Термин «онтогенез» впервые был введён Э. Геккелем в 1866 году. В ходе онтогенеза происходит процесс реализации генетической информации, полученной от родителей.
Раздел современной биологии, изучающий онтогенез, называется биологией развития; начальные этапы онтогенеза изучаются также эмбриологией.
Начальный период
Начальная стадия эмбрионального развития человека характеризуется образованием первичных органов и систем, которые обеспечат нахождение эмбриона в утробе матери вплоть до окончательного формирования всех органов. После того, как плодное яйцо закрепилось в стенках матки, начинается образование клеток, из которых формируются органы. Эмбрион окончательно присоединяется к стенкам матки приблизительно на 12-й день. Он состоит из 3 слоев: эктодермы, эндодермы и мезодермы, из которых, в дальнейшем, формируются все органы. На начальной стадии также образуется хорион (оболочка эмбриона), ворсинки которого, врастая во внутренние стенки матки, образуют плаценту.
Зародышевый период
В данный период происходит формирование первичных кровеносных сосудов. Приблизительно на 20-й день течения беременности тело зародыша отделяется от внезародышевых образований, и окончательно образуются внутренние органы. В зародышевом периоде происходит активное образование головного мозга и нервной системы. В этот период эмбрион напоминает зверька: длинный хвост с лопатообразными конечностями, голова намного больше туловища. Весьма важным моментом данного этапа эмбрионального развития считаетсяобразование плаценты, которая окончательно формируется к 6-ой неделе беременности.
На этапом этапе важно устранить все вредоносные факторы (алкоголь, никотин, наркотические вещества и другие), чтобы не нанести вред здоровью будущего малыша. Хорошо употреблять в пищу витамины С и А, способствующие правильному развитию плаценты. Приблизительно к 7-ой неделе завершается формирование сердца эмбриона. Уже к концу второго месяца беременности кровеносная система плода окончательно сформирована. В зародышевый период оформляется костная система и мышечная масса эмбриона. Также происходит формирование наружных половых признаков, по которым можно определить пол будущего ребенка. На третий месяц развития эмбрион уже называют плодом.
Плодный период
Плодный период начинается с девятой недели беременности. Сейчас активно формируется эндокринная система, вырабатываются гормоны, необходимые для полноценного развития организма. Формируются кисти и ступни, а на них крохотные пальчики, которыми плод совершает первые движения. Ребенок осуществляет свои первые дыхательные акты, в случае если мать не злоупотребляет алкоголем и никотином. На девятый месяц плод активно набирает массу тела, становится доношенным и зрелым и уже готов к рождению.
54ПЕРВЫЙ КРИТИЧЕСКИЙ ПЕРИОД
Предшествует имплантации (прикрепление зародыша к стенке матки) или совпадает с ней. Это так называемая стадия предимплантационного развития (начинается с момента оплодотворения и продолжается до момента прикрепления зародыша к стенке матки -7-8дней после оплодотворения). Зародыш, на данной стадии, относительно устойчив к действию повреждающих агентов. Повреждающее действие реализуется, обычно, по принципу «все или ничего». Однако в конце предимплантационного периода наблюдается кратковременный период подъема чувствительности зародыша к повреждающим агентам. Именно в это время неблагоприятные факторы оказывают эмбриотоксическое действие, приводя к гибели зародыша.