Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ СВЯЗЕЙ



 

При изучении массовых социально–экономических явлений и процессов связь между факторами проявляется в виде корреляционной связи, то есть такой связи, при которой на величину результативного признака оказывают влияние, помимо факторного признака, множество других, действующих в различных направлениях одновременно или последовательно. Корреляционная связь часто называется неполной, статистической или частичной связью, в отличие от функциональной связи, которая выражается в том, что при определенном значении одной переменной величины (аргумента) другая переменная величина (функция) принимает строго определенное значение, которое можно рассчитать по формуле, связывающей переменные величины. Функциональная связь между переменными величинами называется полной связью.

Если функциональная связь проявляется в каждом отдельном случае, то наличие корреляционной связи можно выявить только на основании множества фактов, то есть в виде общей тенденции при массовом наблюдении. При этом каждому значению факторного признака соответствует не одно определенное значение результативного признака, а целая совокупность его значений. В этом случае для определения действующей связи возникает необходимость нахождения среднего значения результативного признака для каждого значения факторного признака. При измерении связи между социально–экономическими явлениями определяется форма связи, а также устанавливается направление и теснота связи.

При определении формы связи выявляется изменение результативного признака в среднем из–за изменения факторного признака, при гипотезе неизменности других признаков.

При установлении направления и тесноты связи возможны три случая: увеличение (уменьшение) факторного признака приводит к увеличению (уменьшению) результативного признака, в этом случае связь прямая; увеличение (уменьшение) факторного признака приводит к уменьшению (увеличению) результативного признака, в этом случае связь обратная; изменение факторного признака не приводит к изменению результативного признака, в этом случае связи нет.

Методом исследования взаимозависимости признаков в генеральной совокупности является корреляционный анализ. Признаки представляют собой случайные величины, имеющие нормальное многомерное распределение.

Основными задачами корреляционного анализа являются: оценка параметров многомерной нормально распределенной генеральной совокупности (генеральных средних, дисперсий и парных коэффициентов корреляции), множественных и частных коэффициентов корреляции; проверка значимости оцениваемых параметров взаимосвязи, получение интервальных оценок для значимых из них, выявление структуры взаимосвязи признаков; построение различных уровней регрессий и статистические выводы относительно полученных уравнений и коэффициентов регрессии (корреляционно–регрессионный анализ). Содержание корреляционно–регрессионного анализа связей количественных признаков.

Регрессия представляет собой функцию f(x1,x2,...,xn), описывающую зависимость условного математического ожидания зависимой переменной Y (вычисленного при условии, что независимые переменные зафиксированы на уровнях x1,x2,...,xn) от заданных фиксированных значений независимых переменных.

В экономических исследованиях часто решают задачу выявления факторов, определяющих уровень и динамику экономического процесса. Такая задача чаще всего решается методами корреляционного и регрессионного анализа. Для достоверного отображения объективно существующих в экономике процессов необходимо выявить существенные взаимосвязи и не только выявить, но и дать им количественную оценку. Этот подход требует вскрытия причинных зависимостей. Под причинной зависимостью понимается такая связь между процессами, когда изменение одного из них является следствием изменения другого.

Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики, и предназначаются для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей. Исследование взаимосвязи случайных величин биржевых ставок приводит к теории корреляции, как разделу теории вероятностей и корреляционному анализу, как разделу математической статистики. Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных. Теория вероятностей и математическая статистика представляют лишь инструмент для изучения статистической зависимости, но не ставят своей целью установление причинной связи. Представления и гипотезы о причинной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.

Явно связаны показатели, которые получены методами прямого счета, т. е. вычислены по заранее известным формулам. Например, проценты выполнения плана, уровни, удельные веса, отклонения в сумме, отклонения в процентах, темпы роста, темпы прироста, индексы и т. д.

Связи же второго типа (неявные) заранее неизвестны. Однако необходимо уметь объяснять и предсказывать (прогнозировать) сложные явления для того, чтобы управлять ими. Поэтому специалисты с помощью наблюдений стремятся выявить скрытые зависимости и выразить их в виде формул, т.е. математически смоделировать явления или процессы. Одну из таких возможностей предоставляет корреляционно-регрессионный анализ.

Математические модели строятся и используются для трех обобщенных целей:

• для объяснения;

• для предсказания;

• для управления.

Представление экономических и других данных в электронных таблицах в наши дни стало простым и естественным. Оснащение же электронных таблиц средствами корреляционно-регрессионного анализа способствует тому, что из группы сложных, глубоко научных и потому редко используемых, почти экзотических методов, корреляционно-регрессионный анализ превращается для специалиста в повседневный, эффективный и оперативный аналитический инструмент. Однако, в силу его сложности, освоение его требует значительно больших знаний и усилий, чем освоение простых электронных таблиц.

Пользуясь методами корреляционно-регрессионного анализа, аналитики измеряют тесноту связей показателей с помощью коэффициента корреляции. При этом обнаруживаются связи, различные по силе (сильные, слабые, умеренные и др.) и различные по направлению (прямые, обратные). Если связи окажутся существенными, то целесообразно будет найти их математическое выражение в виде регрессионной модели и оценить статистическую значимость модели. В экономике значимое уравнение используется, как правило, для прогнозирования изучаемого явления или показателя.

Регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений. Электронные таблицы делают такой анализ легко доступным. Таким образом, регрессионные вычисления и подбор хороших уравнений - это ценный, универсальный исследовательский инструмент в самых разнообразных отраслях деловой и научной деятельности (маркетинг, торговля, медицина и т. д.). Усвоив технологию использования этого инструмента, можно применять его по мере необходимости, получая знание о скрытых связях, улучшая аналитическую поддержку принятия решений и повышая их обоснованность.

Корреляционно-регрессионный анализ считается одним из главных методов в маркетинге, наряду с оптимизационными расчетами, а также математическим и графическим моделированием трендов (тенденций). Широко применяются как однофакторные, так и множественные регрессионные модели.

 

Корреляционно-регрессионный анализ и его возможности

Корреляционный анализ является одним из методов статистического анализа взаимосвязи нескольких признаков.

Он определяется как метод, применяемый тогда, когда данные наблюдения можно считать случайными и выбранными из генеральной совокупности, распределенной по многомерному нормальному закону. Основная задача корреляционного анализа (являющаяся основной и в регрессионном анализе) состоит в оценке уравнения регрессии.

Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

1. Парная корреляция – связь между двумя признаками (результативным и факторным или двумя факторными).

2.Частная корреляция – зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков.

3. Множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным признаком и множеством факторных признаков (при многофакторной связи).

Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определить «полезность» факторных признаков при построении уравнений множественной регрессии. Величина коэффициентов корреляции служит также оценкой соответствия уравнению регрессии выявленным причинно-следственным связям.

Первоначально исследования корреляции проводились в биологии, а позднее распространились и на другие области, в том числе на социально-экономическую. Одновременно с корреляцией начала использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму. И корреляция, и регрессия служат для установления соотношений между явлениями и для определения наличия или отсутствия связи между ними.

 

Предпосылки корреляционного и регрессионного анализа

Перед рассмотрением предпосылок корреляционного и регрессионного анализа, следует сказать, что общим условием, позволяющим получить более стабильные результаты при построении корреляционных и регрессионных моделей биржевых ставок, является требование однородности исходной информации. Эта информация должна быть обработана на предмет аномальных, т.е. резко выделяющихся из массива данных, наблюдений. Эта процедура выполняется за счет количественной оценки однородности совокупности по какому-либо одномерному или многомерному критерию (в зависимости от исходной информации) и имеет цель тех объектов наблюдения, у которых наилучшее (или наихудшее) условия функционирования по не зависящим или слабо зависящим причинам.

После обработки данных на предмет «аномальности» следует провести проверку, насколько оставшаяся информация удовлетворяет предпосылкам для использования статического аппарата при построении моделей, так как даже незначительные отступления от этих предпосылок часто сводят к нулю получаемый эффект. Следует иметь ввиду, что вероятностное или статистическое решение любой экономической задачи должно основываться на подробном осмыслении исходных математических понятий и предпосылок, корректности и объективности сбора исходной информации, в постоянном сочетании с теснотой связи экономического и математико-статистического анализа.

Для применения корреляционного анализа необходимо, чтобы все рассматриваемые переменные были случайными и имели нормальный закон распределения. Причем выполнение этих условий необходимо только при вероятностной оценке выявленной тесноты связи.

Рассмотрим простейшие случай выявления тесноты связи – двумерную модель корреляционного анализа.

Для характеристики тесноты связи между двумя переменными обычно пользуются парным коэффициентом корреляции , если рассматривать генеральную совокупность, или его оценкой – выборочным парным коэффициентом , если изучается выборочная совокупность.

 

Пакет анализа Microsoft Excel

В состав Microsoft Excel входит набор средств анализа данных (так называемый пакет анализа), предназначенный для решения сложных статистических и инженерных задач. Для проведения анализа данных с помощью этих инструментов следует указать входные данные и выбрать параметры; анализ будет проведен с помощью подходящей статистической или инженерной макрофункции, а результат будет помещен в выходной диапазон. Другие средства позволяют представить результаты анализа в графическом виде.

Графические изображения используются прежде всего для наглядного представления статистических данных, благодаря им существенно облегчается их восприятие и понимание. Существенна их роль и тогда, когда речь идет о контроле полноты и достоверности исходного статистического материала, используемого для обработки и анализа.

Статистические данные приводятся в виде длинных и сложных статистических таблиц, поэтому бывает весьма трудно обнаружить в них имеющиеся неточности и ошибки.

 

Графическое же представление статистических данных помогает легко и быстро выявить ничем не оправданные пики и впадины, явно не соответствующие изображаемым статистическим данным, аномалии и отклонения.

Графическое представление статистических данных является не только средством иллюстрации статистических данных и контроля их правильности и достоверности. Благодаря своим свойствам оно является важным средством толкования и анализа статистических данных, а в некоторых случаях - единственным и незаменимым способом их обобщения и познания. В частности, оно незаменимо при одновременном изучении нескольких взаимосвязанных экономических явлений, так как позволяет с первого взгляда установить существующие между ними соотношения и связи, различие и подобие, а также выявить особенности их изменений во времени.

 

Заключение

Наиболее сложным этапом, завершающим регрессионный анализ, является интерпретация полученных результатов, т.е. перевод их с языка статистики и математики на язык экономики.

Интерпретация моделей регрессии осуществляется методами той отрасли знаний, к которой относятся исследуемые явления. Всякая интерпретация начинается со статистической оценки уравнения регрессии в целом и оценки значимости входящих в модель факторных признаков, т.е. с изучения, как они влияют на величину результативного признака. Чем больше величина коэффициента регрессии, тем значительнее влияние данного признака на моделируемую обработку биржевых ставок. Особое значение при этом имеет знак перед коэффициентом регрессии. Знаки коэффициентов регрессии говорят о характере влияния на результативный признак статистической обработки биржевых ставок. Если факторный признак имеет плюс, то с увеличением данного фактора результативный признак возрастает; если факторный признак со знаком минус, то с его увеличением результативный признак уменьшается. Интерпретация этих знаков полностью определяется социально-экономическим содержанием моделируемого признака. Если его величина изменяется в сторону увеличения, то плюсовые знаки факторных признаков имеют положительное влияние. При изменении результативного признака в сторону снижения положительные значения имеют минусовые знаки факторных признаков. Если экономическая теория подсказывает, что факторный признак должен иметь положительное значение, а он со знаком минус, то необходимо проверить расчеты параметров уравнения регрессии.

Корреляционный и регрессионный анализ позволяет определить зависимость между факторами, а так же проследить влияние задействованных факторов. Эти показатели имеют широкое применение в обработке статистических данных для достижения наилучших показателей биржевых ставок.

 

ТЕОРИЯ ИГР

 

Находит применение также теория игр. Так же, как и теория массового обслуживания, теория игр представляет собой один из разделов прикладной математики. Теория игр изучает оптимальные варианты решений, возможные в ситуациях игрового характера. Сюда относятся такие ситуации, которые связаны с выбором оптимальных управленческих решений, с выбором наиболее целесообразных вариантов взаимоотношений с другими организациями, и т.п.

Для решения подобных задач в теории игр используются алгебраические методы, которые базируются на системе линейных уравнений и неравенств, итерационные методы, а также методы сведения данной задачи к определенной системе дифференциальных уравнений.

Одним из экономико-математических методов, применяемых в анализе хозяйственной деятельности организаций, является так называемый анализ чувствительности. Данный метод зачастую применяется в процессе анализа инвестиционных проектов, а также в целях прогнозирования суммы прибыли, остающейся в распоряжении данной организации.

В целях оптимального планирования и прогнозирования деятельности организации необходимо заранее предусматривать те изменения, которые в будущем могут произойти с анализируемыми экономическими показателями.

Например, следует заранее прогнозировать изменение величин тех факторов, которые влияют на размер прибыли: уровень покупных цен на приобретаемые материальные ресурсы, уровень продажных цен на продукцию данной организации, изменение спроса покупателей на эту продукцию.

Анализ чувствительности состоит в определении будущего значения обобщающего экономического показателя при условии, что величина одного или нескольких факторов, оказывающих влияние на этот показатель, изменится.

Так, например, устанавливают, на какую величину изменится прибыль в перспективе при условии изменения количества продаваемой продукции на единицу. Этим самым мы анализируем чувствительность чистой прибыли к изменению одного из факторов, влияющих на нее, то есть в данном случае фактора объема продаж. Остальные же факторы, влияющие на величину прибыли, являются при этом неизменными. Можно определить величину прибыли также и при одновременном изменении в будущем влияния нескольких факторов. Таким образом анализ чувствительности дает возможность установить силу реагирования обобщающего экономического показателя на изменение отдельных факторов, оказывающих влияние на этот показатель.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.