Широкое использование математических методов является важным направлением совершенствования экономического анализа, повышает эффективность анализа деятельности предприятий и их подразделений. Это достигается за счет сокращения сроков проведения анализа, более полного охвата влияния факторов на результаты коммерческой деятельности, замены приближенных или упрощенных расчетов точными вычислениями, постановки и решения новых многомерных задач анализа, практически не выполнимых вручную или традиционными методами.
Применение математических методов в экономическом анализе деятельности предприятия требует:
- системного подхода к изучению экономики предприятий, учета всего множества существенных взаимосвязей между различными сторонами деятельности предприятий; в этих условиях сам анализ все более приобретает черты системного в кибернетическом смысле слова;
- разработки комплекса экономико-математических моделей, отражающих количественную характеристику экономических процессов и задач, решаемых с помощью экономического анализа;
- совершенствования системы экономической информации о работе предприятий;
- наличия технических средств (ЭВМ и др.), осуществляющих хранение, обработку и передачу экономической информации в целях экономического анализа;
- организации специального коллектива аналитиков, состоящего из экономистов-производственников, специалистов по экономико-математическому моделированию, математиков-вычислителей, программистов-операторов и др.
Сформулированная математически задача экономического анализа может быть решена одним из разработанных математических методов. Признаки классификации экономико-математических методов в схеме в значительной мере условны. Например, задачи управления запасами могут решаться методами математического программирования и с применением теории массового обслуживания. Сетевое планирование и управление могут использовать самые различные математические методы. Понятие «исследование операций» иногда трактуется настолько широко, что охватывает все экономико-математические методы.
Приведенная схема еще не является классификатором экономико-математических методов, поскольку она составлена безотносительно к какому-либо классификационному признаку.
Широкое распространение в экономическом анализе имеют методы математической статистики. Эта методы применяются в тех случаях, когда изменение анализируемых показателей можно представить как случайный процесс. Статистические методы, являясь основным средством изучения массовых, повторяющихся явлений, играют важную роль в прогнозировании поведения экономических показателей.
Когда связь между анализируемыми характеристиками не детерминированная, а стохастическая, то статистические и вероятностные методы – это практически единственный инструмент исследования. Наибольшее распространение из математико-статистических методов в экономическом анализе получили методы множественного и парного корреляционного анализа.
Для изучения одномерных статистических совокупностей используются: вариационный ряд, законы распределения, выборочный метод. Для изучения многомерных статистических совокупностей применяют корреляции, регрессии, дисперсионный, ковариационный, спектральный, компонентный, факторный виды анализа, изучаемые в курсах теории статистики.
Эконометрические методы строятся на синтезе трех областей знаний: экономики, математики и статистики. Основой эконометрии является экономическая модель, под которой понимается схематическое представление экономического явления или процесса с помощью научной абстракции, отражения их характерных черт. Наибольшее распространение в современной экономике получил метод анализа экономики «затраты – выпуск». Это матричные (балансовые) модели, строящиеся по шахматной схеме и позволяющие в наиболее компактной форме представить взаимосвязь затрат и результатов производства. Удобство расчетов и четкость экономической интерпретации – главные особенности матричных моделей. Это важно при создании систем механизированной обработки данных, при планировании производства продукции с использованием ЭВМ.
Математическое программирование – быстроразвивающийся раздел современной прикладной математики. Методы математического программирования – основное средство решения задач оптимизации производственно-хозяйственной деятельности. По своей сути эти методы – средство плановых расчетов. Ценность их для экономического анализа выполнения бизнес-планов состоит в том, что они позволяют оценивать напряженность плановых заданий, определять лимитирующие группы оборудования, виды сырья и материалов, получать оценки дефицитности производственных ресурсов.
Под исследованием операций понимаются разработка методов целенаправленных действий (операций), количественная оценка полученных решений и выбор из них наилучшего. Предметом исследования операций являются экономические системы, в том числе производственно-хозяйственная деятельность предприятий. Целью является такое сочетание структурных взаимосвязанных элементов систем, которое в наибольшей степени отвечает задаче получения наилучшего экономического показателя из ряда возможных.
Теория игр как раздел исследования операций – это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.
Теория массового обслуживания исследует на основе теории вероятностей математические методы количественной оценки процессов массового обслуживания. Так, любое из структурных подразделений промышленного предприятия можно представить как объект системы обслуживания.
Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений. Количество требований на обслуживание и временные интервалы между их поступлением носят случайный характер, их нельзя предсказать с однозначной определенностью. Однако в своей совокупности множество таких требований подчиняется определенным статистическим закономерностям, количественное изучение которых и является предметом теории массового обслуживания.
Экономическая кибернетика анализирует экономические явления и процессы в качестве очень сложных систем с точки зрения законов и механизмов управления и движения информации в них. Наибольшее распространение в экономическом анализе получили методы моделирования и системного анализа.
В ряде случаев приходится находить решение экстремальных задач при неполном знании механизма рассматриваемого явления. Такое решение отыскивается экспериментально.
В последние годы в экономической науке усилился интерес к формализации методов эмпирического поиска оптимальных условий протекания процесса, использующих человеческий опыт и интуицию.
Эвристические методы (решения) – это неформализованные методы решения экономических задач, связанных со сложившейся хозяйственной ситуацией, на основе интуиции, прошлого опыта, экспертных оценок специалистов и т. д.
Для анализа производственно-хозяйственной, коммерческой деятельности многие методы из приведенной примерной схемы не нашли практического применения и только разрабатываются в теории экономического анализа. В учебнике рассматриваются основные экономико-математические методы, получившие уже применение в практике экономического анализа.
Применение того или иного математического метода в экономическом анализе опирается на методологию экономико-математическою моделирования хозяйственных процессов и научно обоснованную классификацию методов и задач анализа.
По классификационному признаку оптимальности все экономико-математические методы (задачи) подразделяются на две группы: оптимизационные и неоптимизационные. Если метод или задача позволяет искать решение по заданному критерию оптимальности, то этот метод относят в группу оптимизационных методов. В случае, когда поиск решения ведется без критерия оптимальности, соответствующий метод относят к группе неоптимизационных методов.
По признаку получения точного решения все экономико-математические методы делятся на точные и приближенные. Если алгоритм метода позволяет получить только единственное решение по заданному критерию оптимальности или без него, то данный метод относят к группе точных методов. В случае, когда при поиске решения используется стохастическая информация и решение задачи можно получить с любой степенью точности, используемый метод относят к группе приближенных методов. К группе приближенных методов относят и такие, при применении которых не гарантируется получение единственного решения по заданному критерию оптимальности.