Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Стабилитроны и стабисторы. Стабилитрон – это полупроводниковый диод, изготовленный из слабо легированного



Стабилитрон – это полупроводниковый диод, изготовленный из слабо легированного кремния, который применяется для стабилизации постоянного напряжения. ВАХ стабилитрона при обратном смещении имеет участок малой зависимости напряжения от тока протекающего через него. Этот участок возникает за счёт электрического пробоя (рис. 1.5). На участке 1-2 напряжение на диоде остается практически постоянным при изменении тока через диод.

Стабилитрон характеризуется следующими параметрами:

Номинальное напряжение стабилизации Uст. ном — номинальное напряжение на стабилитроне в рабочем режиме (при заданном токе стабилизации);

номинальный ток стабилизации Iст.ном – ток через стабилитрон при номинальном напряжении стабилизации;

минимальный ток стабилизации Iст min — наименьшее значение тока стабилизации, при котором режим пробоя устойчив;

максимально допустимый ток стабилизации Iст maxнаибольший ток стабилизации, при котором нагрев стабилитронов не выходит за допустимые пределы.

Дифференциальное сопротивление гст — отношение приращения напряжения стабилизации к вызывающему его приращению тока стабилизации: гст= DUст /DIст.

ТКН – температурный коэффициент напряжения стабилизации:

,

– относительное изменение напряжения на стабилитроне приведённое к одному градусу. Uст.ном. < 5В – при туннельном пробое.

Uст.ном. > 5В – при лавинном пробое.

К параметрам стабилитронов также относят максимально допустимый прямой ток Imax, максимально допустимый импульсный ток Iпр.и max, максимально допустимую рассеиваемую мощность Р max.

Стабилитроны предназначены для стабилизации напряжения на нагрузке при изменении питающего напряжения или сопротивления нагрузки, для фиксации уровня напряжения и т. д.

Параметрический стабилизатор напряжения (рис.9.). Он служит для обеспечения постоянства напряжения на нагрузке (Uн) при изменении постоянного напряжения питания (Uпит) или сопротивления нагрузки (Rн).

Нагрузка (потребитель) включена параллельно стабилитрону. Ограничительное сопротивление (Rогр) служит для установления и поддержания правильного режима стабилизации. Обычно Rогр рассчитывают для средней точки ВАХ стабилитрона (рис.5). Схема обеспечивает стабилизацию напряжения за счёт перераспределения токов IVD и IН

Проведем анализ работы схемы.

По второму закону запишем соотношение:

Uпит = (IVD + IН ) Rогр+ Uн

Изменение напряжения питания на DUпит, приводит к появлению приращения напряжению на нагрузке на DUн и токов DIVD =DUн/rст , DIН=DUн/ Rн . Запишем исходное уравнение относительно приращений:

DUпит = (DUн/rст + DUн/ Rн) Rогр+DUн = DUн(1/rст + 1/Rн) Rогр+DUн.

Разрешим его относительно DUн, получим

DUн = DUн/[1+ Rогр/rст + Rогр/Rн.]

Поскольку Rогр/rст велико, то DUн мало. Чем больше Rогр и меньше rст тем меньше изменения выходного напряжения.

Расчёт схемы (обычно задано Uпит. и RН):

Выбор стабилитрона VD1 из условий: и Iст.ном.> Iн.

Расчет

Разновидности стабилитронов:

1. Прецизионные. Они имею малое значение ТКН и нормированную величину Uст.ном. Малое ТКН достигается путем включения последовательно со стабилитроном (VD2), имеющим положительный ТКН диоды (VD1) в прямом направлении, ТКН которого отрицателен. Поскольку общий ТКН равен их сумме, то он оказывается малым по величине.

2. Двуханодный стабилитрон. Он состоит из двух стабилитронов включенных встречно-последовательно и применяется для стабилизации амплитуды переменных напряжений.

Стабисторы – это полупроводниковые диоды в которых для стабилизации напряжения используется прямая ветвь ВАХ. В таких диодах база сильно легирована примесями (rб→0), а потому их прямая ветвь практически идет вертикально. Параметры стабистора аналогичны параметрам стабилитрона. Они применяются для стабилизации малых напряжений (Uст.ном. ≈0.6В). ), ток стабисторов – от 1мА до нескольких десятков мА и отрицательный ТКН.

 

Диоды Шотки.

Электрический переход, возникающий на границе металл – полупроводник, при определенных условиях обладает выпрямительными свойствами. Он создаётся путём напыления металла на высокоомный полупроводник, например, n-типа. Прибор на основе такого перехода называется диодом Шотки. Главная особенность этого диода – это отсутствие неосновных носителей заряда в процессе его работы. Прямой ток обусловлен электронами, движущимися из кремния в металл. Следовательно, практически отсутствуют процессы их накопления и рассасывания, а потому диоды Шоттки имеют высокое быстродействие переключения.

Другой особенностью этих диодов является малое (по сравнению с обычными кремниевыми диодами) прямое напряжение, составляющее около 0,3 В. Это связано с тем, что тепловой ток примерно на три порядка превышает ток р-п- перенхода.

В импульсных схемах диоды Шоттки широко используются в комбинации с транзисторами. Такие транзисторы называются транзисторами Шотки – они имеют высокое быстродействие переключения.

 

 

Тиристоры

Тиристорыэто полупроводниковые приборы с тремя и более р-п-переходами. Они предназначены, для использования в качестве электронных ключей в схемах коммутации больших по величине токов при сравнительно невысоком быстродействие.

В зависимости от вида ВАХ и способа управления тиристоры делят на диодные и триодные.

Диодные тиристоры имеют два выводы – анод и катод. В зависимости от способа управления включения или выключения тока, они бывают: запираемые в обратном направлении (1), проводящие в обратном направлении (2) и симметричные (3). Последние представляют собой встречно- последовательное соединение тиристоров запираемых в обратном направлении. Они способны пропускать ток как в прямом, а также в обратном направлении. Они имеют два вывода, которые называются: анод 1, и анод 2.

Триодные тиристоры называют просто – тиристорами. Они имеют три вывода. Появляется третий управляющий электрод (УЭ). Напряжение, подаваемое на него, позволяет управлять включением (выключением) тиристора. Триодные тиристоры подразделяют на: запираемые в обратном направлении с управлением по аноду (4) и по катоду (5); проводящие в обратном направлении с управлением по аноду (6) и по катоду (7); симметричные (двунаправленные).

Структура тиристора, ВАХ и принцип работы

Простейший диодный тиристор имеет четырехслойную р-п-р-п-структуру (рис.А б), изготовленную из кремния.

Область р1, на которую подают положительное напряжение от источника напряжения Еа называется – анодом, область п2 – катодом, а области п1 и р2 – базами. Между р и п областями возникают р-п-переходы П1, П2, П3. Переходы П1 и П3 называются эмиттерными, переход П2 – коллекторным т.к. он смещен в обратном направлении. Аналогом тиристора может служить схема (рис. А а) из двух биполярных транзисторов VT1 – р-п-р-типа и VT2 - п-р-п-типа.

Вольт-амперная характеристика динистора приведен на рис. Ав. На ней можно выделить четыре участка.

Участок – 1. На аноде положительное напряжение. Переходы П1 и П3 смещены в прямом направлении, а переход П2 – в обратном.

Все внешнее напряжение будет приложено к КП. Ток коллекторного перехода Iкп – это малый по величине ток неосновных носителей заряда. Он является суммой токов, вызванных инжекцией через эмиттерные переходы П1 и П3, и небольшого собственной обратного тока перехода П2:

Iкп=a1Iэ1+ a2Iэ2 +Iко,

где a1 и a2 – коэффициенты инжекции тока эмиттерных переходов П1 и П3. Очевидно, что Iкп=Iэ1=Iэ2= Iа т.к. это элементы одной злектрической ветви, а потому

Iа=I/ко (1-(a1+ a2))

Пока напряжение между анодом и катодом относительно мало a1 + a2<<1, Iкп= Iк0, сопротивление прибора велико (до сотен килоом). Таккак коэффициенты передачи тока эмиттерных переходов П1 и П3 (a1 и a2) с увеличением Uак растут. Следовательно, растет и ток Iа .

Участок 2. При определенном значении напряжения Uак, называемом напряжением включения Uвкл, a1 + a2 =1. Ток в соответствии с (6.4) должен •стремиться к бесконечности. Начинается лавинообразное увеличение токов. Транзисторы переходят в режим полного насыщения. Сопротивление прибора при этом падает до единиц ом. Но наличие в цепи анода резистора с сопротивлением Rа- ограничивает ток на уровни Еа/Rа..

Участок 3, соответствует ВАХ диода в отрытом состоянии. Это проводящее состояние динистора. Iа@Еа /R.

Участок 4. Переходы П1 и П3 смещены в обратном направлении. Ток динистора мал. Это запертое т.е. непроводящее ток, состояние динистора. При достаточно больших обратных напряжениях, обратный ток динистора резко возрастает – это тепловой пробой. В основном за процесс включения динистора отвечает переход П3 и процессы в области р2. Обычно выполняется условие a2>a1. Это достигается конструкцией – Wn1>Wp2, где Wn1>Wp2 – толщина базы n1 и p2.

Тирстор имеет дополнительный – управляющий электрод. Если, используя управляющий электрод, с помощью внешнего источника напряжения или тока в

цепи эмиттерного перехода П3

обеспечить протекание тока, то это вызовет увеличение a2 и сумма a1 + a2 приблизится к единице при меньшем напряжении Uак, чем при отсутствии тока в цепи управляющего электрода. Следовательно, изменяя ток управляющего электрода, Iуэ можноа изменять Uвкл. После открывания тиристора ток Iуэ может быть уменьшен до нуля, но прибор останется во включенном состоянии. Чтобы выключить прибор, надо прервать или значительно уменьшить на определенное время проходящий через, него ток – условие выключения тиристора Iа <Iуд.

 

Параметры тиристоров. Тиристоры принято характеризовать напряжением и токомвключения; максимально допустимым обратным напряжением, максимально допустимым током в открытом состоянии, падением напряжения на приборе при максимально допустимом прямом токе; током выключения или его называют током удержания (током, ниже которого прибор переходит в закрытое состояние), минимальной длительностью включающего импульса: Все эти параметры и ряд дополнительных данных об условиях эксплуатация тиристоров приводится в соответствующих справочниках.

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.