Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Основы зонной теории твердых тел. Энергетические зоны металлов и полупроводников. Энергия Ферми



Основы зонной теории твердых тел.

В соответствии с квантовой механикой свободные электроны могут иметь любую энергию — их энергетический спектр непрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.

Согласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей).

В случае нескольких атомов, объединенных химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более 1020), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни расщепляются до практически непрерывных дискретных наборов — энергетических зон. Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной зоной, следующая за ней — зоной проводимости. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

В основе зонной теории лежат следующие главные приближения:

1. Твердое тело представляет собой идеально периодический кристалл.

2.Равновесные положения узлов кристаллической решетки фиксированы, т.е. ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы, вводятся впоследствии как возмущение электронного энергетического спектра.

3. Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.

Ряд явлений, по существу многоэлектронных, таких, как ферромагнетизм, сверхпроводимость, и таких, где играют роль экситоны, не может быть последовательно рассмотрен в рамках зонной теории. Вместе с тем, при более общем подходе к построению теории твердого тела оказалось, что многие результаты зонной теории шире ее исходных предпосылок.

Энергетические зоны металлов и полупроводников.

Всю совокупность атомов в куске твердого тела следует рассматривать как единую целую структуру, которая подобно атому характеризуется некоторым единым энергетическим спектром. Особенность этого спектра в том, что он состоит из дискретных разрешенных зон.

Прежде всего, следует обратить внимание на запрещенную зону (зону запрещенных энергий), которая разделяет разрешенные зоны. Отметим, что у диэлектриков ширина запрещенной зоны больше, чем у полупроводников, а у металлов разрешенные зоны сливаются, так что запрещенной зоны у них нет.

Ширина запрещенной зоны εз, определяющая энергетический промежуток запрещенных энергий, является важнейшим параметром полупроводника.

Верхняя разрешенная зона называется зоной проводимости. Электроны, находящиеся в этой зоне, обладают довольно большой энергией и могут ее изменять под действием электрического поля, перемещаясь в объеме полупроводника. Электропроводность полупроводника и определяется этими электронами.

Нижняя разрешенная зона называется валентной зоной. Энергетические уровни этой зоны обычно заполнены электронами внешней оболочки атомов - внешних устойчивых орбит (валентными электронами). При наличии свободных уровней в валентной зоне электроны также могут изменять свою энергию под действием электрического поля. Если же все уровни зоны заполнены, то валентные электроны не смогут принять участие в проявлении электропроводности полупроводника.

В металлах валентная зона заполнена не полностью (они обладают низкой валентностью), в результате чего валентные электроны могут свободно перемещаться между атомами и, соответственно, концентрация свободных электронов чрезвычайно велика. Энергетический уровень, разделяющий заполненную и свободную части зон в металле, называют уровнем Ферми (в действительности - это поверхность). Формально уровень Ферми (F) можно определить как энергетический уровень, вероятность заполнения которого равна ½. Ниже этого уровня преобладают электроны, выше преобладает свободное пространство (дырки).

Энергия Ферми.

Энергия Ферми-максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Существование энергии Ферми – следствие принципа Паули, согласно которому в состоянии с определённым импульсом p не может находиться более (2s + 1) частиц (s – спин частицы). Энергия Ферми совпадает со значениями химического потенциала газа фермионов при Т =0 К. Энергию Ферми EF можно выразить через число n частиц газа в единице объёма: , где m – масса частицы. Величина pF = называется ферми импульсом, или граничным импульсом. При Т =0 К все состояния с импульсами р < pF заняты частицами, а с р> pFсвободны. Иными словами, при Т = 0 К фермионы занимают в импульсном пространстве состояния внутри сферы p2 = 2mEF с радиусом pF (ферми-сферы). При нагревании некоторые частицы переходят из состояния с р < pF в состояние с р > pF. Внутри ферми-сферы появляются свободные места, называемые дырками. Величина vF = pF/m = , называется ферми-скоростью (или граничной скоростью), определяет верхнюю границу скоростей фермионов при Т =0 К.

Вопрос №18.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.