Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Техника эксперимента в качественном анализе



В качественном анализе используют пробирочные, капельные и микрокристаллоскопические реакции.

Пробирочные реакции проводят в небольших пробирках вместимостью от одного до нескольких миллилитров, куда помещают одну или несколько капель анализируемого раствора. Аналитический эффект (появление, изменение или исчезновение окраски; образование или растворение осадка; выделение пузырьков газа) наблюдают визуально. Например, пробирочные реакции используют для обнаружения ионов Mg2+ по образованию белого аморфного осадка Mg(OH)2, обнаружения ионов Ва2+ по образованию жёлтого мелкокристаллического осадка ВаCrO4, проведения пробы на выделение газов при анализе смеси анионов и т. д.

Выполняя капельные реакции, визуально изучают продукт реакции, который образуется при смешении одной капли реагента с одной каплей анализируемого раствора. Капельные реакции проводят:

ü на поверхности пластинки (стеклянной, фарфоровой, пластмассовой). Этот способ позволяет отчётливо наблюдать появление или исчезновение окраски, образование осадка;

ü на полоске фильтровальной бумаги. Этот способ используют для цветных капельных реакций;

ü в микрогазовой камере. Этот способ используют для капельных реакций, протекающих с образованием газообразных продуктов.

Пример проведения капельной реакции на поверхности пластинки (часовом стекле) – обнаружение следовых количеств ионов аммония с реактивом Несслера; на полоске фильтровальной бумаги – обнаружение ионов Zn2+ c дитизоном, хромат-ионов с бензидином; в микрогазовой камере – обнаружение ионов аммония по посинению влажной индикаторной бумаги в результате выделения NH3 под действием щёлочи.

Микрокристаллоскопические реакции проводят на предметном стекле, затем рассматривают под микроскопом характерную форму кристаллов. Например, ионы К+ образуют характерные кубические кристаллы чёрного или коричневого цвета K2Pb[Cu(NO2)6] при действии реагента Na2Pb[Cu(NO2)6], а ионы Na+ – прозрачные бесцветные кристаллы в виде удлинённых зёрен при действии реагента KH2SbO4.


Методы разделения и обнаружения ионов,

имеющих наибольшее значение

в химической технологии

В производственной деятельности инженеры-технологи сталкиваются с необходимостью контролировать качественный состав сырья и продукции на различных этапах технологического процесса. Наиболее часто в химической технологии применяются соединения катионов I–III аналитических групп, поэтому в настоящем учебном пособии рассматриваются методы разделения и обнаружения только тех ионов, которые наиболее часто встречаются при анализе различных природных и промышленных объектов.

Катионы I аналитической группы

Общая характеристика

В I аналитическую группу входят катионы Na+, K+, NH4+, Mg2+.

Ионы Na+ и K+относятся к I группе Периодической системы элементов Д. И. Менделеева. Большинство солей катионов этой группы хорошо растворимо в воде. Главное отличие катионов I группы – растворимость в воде их сульфидов, гидроксидов, карбонатов и хлоридов. Поэтому катионы I группы не осаждаются групповыми реагентами других групп, а остаются в растворе. Ионы магния, который находится во II группе Периодической системы элементов, по некоторым химическим свойствам ближе к катионам щелочных, а не щелочноземельных металлов. При осаждении II аналитической группы карбонатом аммония в присутствии NH4Cl ионы Mg2+ остаются в растворе.

Все катионы I аналитической группы бесцветны. Окраска некоторых солей обусловлена окраской анионов. Группового реагента, осаждающего все катионы I аналитической группы, нет.

Характерные реакции ионов Na+

1) Микрокристаллоскопическая реакция с антимонатом калия.

Если в анализируемом раствореотсутствуют ионы NH4+ и Mg2+, то ионы Na+ открывают микрокристаллоскопической реакцией с антимонатом калия KH2SbO4. При этом в нейтральной среде образуется белый мелкокристаллический осадок антимоната натрия NaH2SbO4:

Na+ + KH2SbO4 → NaH2SbO4↓ + K+.

В сильнощелочной среде осадок не образуется, а из сильнокислых растворов выпадает белый аморфный осадок метасурьмяной кислоты HSbO3, поэтому при рассмотрении под микроскопом необходимо убедиться в том, что полученный осадок – кристаллический. Реакцию проводят на холоду. Мешающие ионы – Li+, NH4+, Mg2+.

2) Микрокристаллоскопическая реакция с цинкуранилацетатом.

КатионыNa+ открывают также микрокристаллоскопической реакцией с цинкуранилацетатом, образующим характерные жёлтые октаэдрические и тетраэдрические кристаллы натрийцинкуранилацетата, не растворимого в уксусной кислоте:

Na+ + Zn[(UO2)3(CH3COO)8] + CH3COO + 9H2O →

→ NaZn[(UO2)3(CH3COO)9]·9H2O .

Мешающие ионы – Li+, K+, NH4+, Mg2+.

3) Окрашивание пламени.

Соли натрия окрашивают пламя в интенсивно-жёлтый цвет.

Характерные реакции ионов K+

1) Микрокристаллоскопическая реакция с гексанитрокупратом (II) натрия и свинца.

КатионыK+ в нейтральной среде образуют с гексанитрокупратом (II) натрия и свинца Na2Pb[Cu(NO2)6] чёрные кубические кристаллы K2Pb[Cu(NO2)6]:

2K+ + Na2Pb[Cu(NO2)6]→K2Pb[Cu(NO2)6] + 2Na+ .

2) Реакция с гексанитрокобальтатом (III) натрия.

Ионы K+образуют с гексанитрокобальтатом (III) натрия жёлтый кристаллический осадок состава K2Na[PbCo(NO2)6]:

2K+ + Na3[Co(NO2)6]→K2Na[Co(NO2)6] + 2Na+ .

3) Окрашивание пламени.

Соли калия окрашивают пламя в фиолетовый цвет.

Характерные реакции ионов NH4+

1) Реакция со щелочами.

При действии щелочей на раствор соли аммония при нагревании выделяется аммиак, который можно обнаружить по изменению окраски влажной индикаторной бумаги:

NH4+ + OH → NH3↑ + H2O.

2) Реакция с реактивом Несслера.

Реактив Несслера в щелочной среде образует с ионами аммония характерный красно-бурый осадок:

NH4+ + 2K2[HgI4] + 4KOH → [OHg2NH2]I↓ + KCl + 7KI + 3H2O.

Если концентрация ионов NH4+ мала, осадок не выпадает, а раствор окрашивается в оранжевый цвет. Это наиболее специфическая реакция на ионы NH4+. Катионы I и II групп не мешают определению, т. к. образуют бесцветные гидроксиды.

Характерные реакции ионов Mg2+

1) Реакции со щелочами и аммиаком.

Катионы Mg2+ при действии щелочей и аммиака образуют белый аморфный осадок гидроксида магния Mg(OH)2:

Mg2+ + 2OH→ Mg(OH)2↓.

Осадок не растворяется в щелочах, но растворяется в кислотах.

2) Реакция с гидрофосфатом натрия.

Катионы Mg2+ образуют с гидрофосфатом натрия в присутствии аммиачного буферного раствора белый мелкокристаллический осадок магнийаммонийфосфата NH4MgPO4:

Mg2+ + HPO42– + NH3 → NH4MgPO4↓.

Реакцию можно провести как микрокристаллоскопическую.

Методы разложения и удаления солей аммония

Ионы NH4+ мешают открытию ионов Na+ и K+, поэтому при проведении анализа поступают следующим образом:

ü сначала открывают ионы NH4+;

ü затем полностью удаляют ионы NH4+ (если обнаружены);

ü после полного удаления ионов NH4+ открывают Na+ и K+.

Существуют следующие способы удаления катионов NH4+:

1) анализируемый раствор, содержащий катионы аммония, подкисляют концентрированной азотной или соляной кислотой, досуха упаривают в фарфоровой чашке, а затем прокаливают сухой остаток до полного удаления NH4+. Полноту удаления контролируют качественной реакцией с реактивом Несслера;

2) к анализируемому раствору добавляют раствор щёлочи с последующим нагреванием до полного удаления NH4+. Полноту удаления контролируют по влажной индикаторной бумаге.

Систематический ход анализа катионов I группы

При изучении реакций катионов I аналитической группы можно сделать следующие выводы:

ü присутствие иона NH4+ мешает открытию иона К+ всеми реактивами и открытию иона Na+ реактивом KH2SbO4;

ü обнаружению ионов NH4+ и Mg2+ другие катионы I группы не мешают;

ü ион К+ может быть обнаружен в присутствии ионов Na+ и Mg2+;

ü ионы NH4+ можно удалить из раствора выпариванием и последующим прокаливанием;

ü ионы Mg2+ можно удалить из раствора осаждением в виде Mg(OH)2.

Исходя из этого, систематический ход анализа должен включать следующие операции, которые выполняются в строго определённой последовательности:

1) обнаружение иона NH4+;

2) удаление иона NH4+ (если обнаружен);

3) обнаружение иона К+;

4) обнаружение иона Mg 2+;

5) осаждение иона Mg 2+ (если обнаружен);

6) обнаружение иона Na+.

Схема отделения и разделения ионов внутри I аналитической группы при проведении систематического анализа представлена на рис. 2.

Раствор: NH4+ Na+ К+ Mg 2+
Упаривание раствора и прокаливание сухого остатка

 

 

Газовая фаза: NH3­   Раствор: Na+ К+ Mg 2+
      +КОН
       

 

      Раствор: Na+ К+ Осадок: Mg(OH)2

Рис. 2. Схема разделения катионов I группы


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.