Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Архитектура и стандартизация сетей 9 страница



В технологии TCP/IP сетевой адрес называют IP-адресом.

ВНИМАНИЕ

Если рассматривать IP-сеть, то можно отметить, что маршрутизатор по определению входит сразу в несколько сетей, следовательно, каждый его интерфейс имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов — по числу сетевых связей. Таким образом. IP-адрес идентифицирует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Каждый раз, когда пакет направляется адресату через составную сеть, в его заголовке указывается IP-адрес узла назначения. По номеру сети назначения каждый очередной маршрутизатор находит IP-адрес следующего маршрутизатора. Перед тем как отправить пакет в следующую сеть, маршрутизатор должен определить на основании найденного IP-адреса следующего маршрутизатора его локальный адрес. Для этой цели протокол IP, как показано на рис. 15.3, обращается к протоколу разрешения адресов (ARP).

Рис. 1 5.3. Преобразование адресов

 

Доменные имена

 

Для идентификации компьютеров аппаратное и программное обеспечение в сетях TCP/IP полагается на IP-адреса. Например, команда ftp://192.45.66.17 будет устанавливать сеанс связи с нужным ftp-сервером, а команда http://203.23.106.33 отключает начальную страницу на корпоративном веб-сервере. Однако пользователи обычно предпочитают работать с более удобными символьными именами компьютеров.

Символьные идентификаторы сетевых интерфейсов в пределах составной сети строятся по иерархическому принципу. Составляющие полного символьного (или доменного) имени в IP-сетях разделяются точкой и перечисляются в следующем порядке: сначала простое имя хоста, затем имя группы хостов (например, имя организации), потом имя более крупной группы (домена) и так до имени домена самого высокого уровня (например, домена объединяющего организации по географическому принципу: RU — Россия, UK — Велико­британия, US — США). Примером доменного имени может служить имя base2.sales.zil.ru.

Между доменным именем и IP-адресом узла нет никакой функциональной зависимости, поэтому единственный способ установления соответствия — это таблица. В сетях TCP/IP используется специальная система доменных имен (Domain Name System, DNS), которая устанавливает это соответствие на основании создаваемых администраторами сети таблиц соответствия. Поэтому доменные имена называют также DNS-именами.

В общем случае сетевой интерфейс может иметь несколько локальных адресов, сетевых адресов и доменных имен.

 


Формат IP-адреса

 

В заголовке IP-пакета для хранения IP-адресов отправителя и получателя отводятся два поля, каждое имеет фиксированную длину 4 байта (32 бита). IP-адрес состоит из двух логических частей — номера сети и номера узла в сети.

Наиболее распространенной формой представления IP-адреса является запись в виде четырех чисел, представляющих значения каждого байта в десятичной форме и разделенных точками, например:

128.10.2.30 Этот же адрес может быть представлен в двоичном формате:

10000000 00001010 00000010 00011110 А также в шестнадцатеричном формате:

80.0A.02.1D

Заметим, что запись адреса не предусматривает специального разграничительного знака между номером сети и номером узла. Вместе с тем при передаче пакета по сети часто возникает необходимость разделить адрес па эти две части. Например, маршрутизация, как правило, осуществляется на основании номера сети, поэтому каждый маршрутизатор, получая пакет, должен прочитать из соответствующего поля заголовка адрес назначение и выделить из него номер сети. Каким образом маршрутизаторы определяют, какая часть из 32 бит, отведенных под IР-адрес, относится к номеру сети, а какая к номеру узла?

Можно предложить несколько вариантов решения этой проблемы.

  • Простейший из них состоит в использовании фиксированной границы. При этом вес 32-битное поле адреса заранее делится на две части не обязательно равной, но фиксированной длины, в одной из которых всегда будет размещаться номер сети, в другой — номер узла. Решение очень простое, но хорошее ли? Поскольку поле, которое отводится для хранения номера узла, имеет фиксированную длину, все сети будут иметь одинаковое максимальное число узлов. Если, например, под номер сети отвести один первый байт, то вес адресное пространство распадется на сравнительно небольшое (28) число сетей огромного размера (234 узлов). Если границу передвинуть дальше вправо, то сетей станет больше, но все равно вес они будут одинакового размера. Очевидно, что такой жесткий подход не позволяет дифференцированно удовлетворять потребности отдельных предприятий и организаций. Именно поэтому он не нашел применения, хотя и использовался на начальном этапе существования технологии TCP/IP (RFC 760).
  • Второй подход (RFC 950, RFC 1518) основан на использовании маски, которая позволяет максимально гибко устанавливать границу между номером сети и номером узла. При таком подходе адресное пространство можно использовать для создания множества сетей разного размера.
  • Маска — это число, применяемое в паре с IP-адресом, причем двоичная запись маски содержит непрерывную последовательность единиц в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Граница между последовательностями единиц и нулей в маске соответствуем границе между номером сети и номером узла в IP-адресе.
  • И, наконец, способ, основанный на классах адресов (RFC 791). Этот способ представляет собой компромисс по отношению к двум предыдущим: размеры сетей хотя и не могут быть произвольными, как при использовании масок, но и не должны быть одинаковыми, как при установлении фиксированных границ. Вводится пять классов адресов: А, В, С, D, Е. Три из них — А, В и С — предназначены для адресации сетей, а два — D и Е — имеют специальное назначение. Для каждого класса сетевых адресов определено собственное положение границы между номером сети и номером узла.

 

Классы IP-адресов

 

Признаком, на основании которого IP-адрес относят к тому или иному классу, являются значения нескольких первых битов адреса. Таблица 15.1 иллюстрирует структуру , IР-адресов разных классов.

Таблица 15.1. Классы IP-адресов

 

Класс Первые биты Наименьший номер сети Наибольший номер сети Максимальное число узлов в сети
A 1.0.0.0 (0 – не используется) 126.0.0.0 (127 – зарезервирован) 224, поле 3 байт
B 128.0.0.0 191.255.0.0 216, поле 2 байт
C 192.0.0.0 223.255.255.0 28, поле 1 байт
D 224.0.0.0 239.255.255.255 Групповые адреса
E 240.0.0.0 247.255.255.255 Зарезервировано

 

  • К классу А относится адрес, в котором старший бит имеет значение 0. В адресах класса А под идентификатор сети отводится 1 байт, а остальные 3 байта интерпретируются как номер узла в сети. Сети, все IP-адреса которых имеют значение первого байта в диапазоне от 1 (00000001) до 126 (01И1110), называются сетями класса А. Значение 0 (00000000) первою байта не используется, а значение 127 (01111111) зарезервировано для специальных целей (см. далее). Сетей класса А сравнительно немного, зато количество узлов в них может достигать 224, то есть 16 777 216 узлов.
  • К классу В относятся все адреса, старшие два бита которых имеют значение 10. В адресах класса В под номер сети и под номер узла отводится по 2 байта. Сети, значения первых двух байтов адресов которых находятся в диапазоне от 128.0 (10000000 00000000) до 191.255 (1011111111111111), называются сетями класса В. Ясно, что сетей класса В больше, чем сетей класса А, а размеры их меньше. Максимальное количество узлов в сетях класса В составляет 216 (65 536).
  • К классу С относятся все адреса, старшие три бита которых имеют значение 110. В адресах класса С под номер сети отводится 3 байта, а под номер узла — 1 байт. Сети, старшие три байта которых находятся в диапазоне от 192.0.0 (11000000 00000000 00000000) до 223.255.255 (11011111 11111111 11111111), называются сетями класса С. Сети класса С наиболее распространены, и наименьшее максимальное число узлов в них равно 28(256).
  • Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый групповой адрес (multicast address). В то время как адреса классов А, В и С служат для идентификации отдельных сетевых интерфейсов, то есть являются индивидуальными адресами (unicast address), групповой адрес идентифицирует группу сетевых интерфейсов, которые в общем случае могут принадлежать разным сетям. Интерфейс, входящий в группу, получает наряду с обычным индивидуальным IP-адресом еще один групповой адрес. Если при отправке пакета в качестве адреса назначения указан адрес класса D, то такой пакет должен быть доставлен всем узлам, которые входят в группу.
  • Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е. Адреса этого класса зарезервированы для будущих применений.

Чтобы получить из IP-адреса номер сети и номер узла, требуется не только разделить адрес на две соответствующие части, но и дополнить каждую из них нулями до полных 4 байт. Возьмем, например, адрес класса В 129.64.134.5. Первые два байта идентифицируют сети а последующие два — узел. Таким образом, номером сети является адрес 129.64.0.0, а номером узла — адрес 0.0.134.5.

 

Особые IP-адреса

 

В TCP/IP существуют ограничения при назначении IP-адресов, а именно номера сетей и номера узлов не могут состоять из одних двоичных нулей или единиц. Отсюда следует, что максимальное количество узлов, приведенное в табл. 15.1 для сетей каждого класса, должно быть уменьшено на 2. Например, в адресах класса С под номер узла отводится 8 бит, которые позволяют задать 256 номеров: от 0 до 255. Однако в действительности максимально число узлов в сети класса С не может превышать 254, так как адреса 0 и 255 запрещены для адресации сетевых интерфейсов. Из этих же соображений следует, что конечный узел не может иметь адрес типа 98.255.255.255, поскольку номер узла в этом адресе класса А состоит из одних двоичных единиц.

Итак, некоторые IP-адреса интерпретируются особым образом:

  • Если IP-адрес состоит только из двоичных нулей, то он называется неопределенным адресом и обозначает адрес того узла, который сгенерировал этот пакет. Адрес такого вида в особых случаях помещается в заголовок IP-пакета в поле адреса отправителя.
  • Если в поле номера сети стоят только нули, то по умолчанию считается, что узел назначения принадлежит той же самой сети, что и узел, который отправил пакет. Такой адрес также может быть использован только в качестве адреса отправителя.
  • Если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такой адрес называется ограниченным широковещательным (limited broadcast). Ограниченность в данном случае означает, что пакет не выйдет за границы данной сети не при каких условиях.
  • Если в поле адреса назначения в разрядах, соответствующих номеру узла, стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети, номер которой указан в адресе назначения. Например, пакет с адресом 192.190.21.255 будет направлен всем узлам сети 192.190,21.0. Такой тип адреса называется широковещательным (broadcast:).

ВНИМАНИЕ

В протоколе IP нет понятия широковещания в том смысле, в которомоно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам сети. Как ограниченный, так и обычный варианты широковещательной рассылки имеют пределы распространения в составной сети: они ограничены либо сетью, которой принадлежит источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из подсетей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.

Особый смысл имеет IP-адрес, первый октет которого равен 127. Этот адрес является внутренним адресом стека протоколов компьютера (или маршрутизатора). Он используется для тестирования программ, а также для организации работы клиентской и серверной частей приложения, установленных на одном компьютере. Обе программные части данного приложения спроектированы в расчете на то, что они будут обмениваться сообщениями по сети. Но какой же IP-адрес они должны использовать для этого? Адрес сетевого интерфейса компьютера, на котором они установлены? Но это приводит к избыточным передачам пакетов в сеть. Экономичным решением является применение внутреннего адреса 127.0.0.0.

B IP-сети запрещается присваивать сетевым интерфейсам IP-адреса, начинающиеся со значения 127. Когда программа посылает данные по IP-адресу 127.х.х.х, то данные не передаются в сеть, а возвращаются модулям верхнего уровня того же компьютера как только что принятые. Маршрут перемещения данных образует «петлю», поэтому этот адрес называется адресом обратной петли (loopback).

Уже упоминавшиеся групповые адреса, относящиеся к классу D, предназначены для экономичного распространения в Интернете или большой корпоративной сети аудио- или видеопрограмм, адресованных сразу большой аудитории слушателей или зрителей. Если групповой адрес помещен в поле адреса назначения IP-пакета, то данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Один и тот же узел может входить в несколько групп. В общем случае члены группы могут распределяться по различным сетям, находящимся друг от друга на произвольно большом расстоянии. Групповой адрес не делится на номера сети и узла и обрабатывается маршрутизатором особым образом. Основное назначение групповых адресов — распространение информации по схеме «один ко многим». От того, найдут групповые адреса широкое применение (сейчас их используют в основном небольшие экспериментальные «островки»- в Интернете), зависит, сможет ли Интернет создать серьезную конкуренцию радио и телевидению.

 

Использование масок при IP-адресации

 

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации.

Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде IP-адрес 129.64.134.5 — это:

10000001.01000000.10000110.00000101, а маска 255.255.128.0 в двоичном виде выглядит так:

11111111.11111111.10000000.00000000. Если игнорировать маску и интерпретировать адрес 129.64.134.5 на основе классов, то номером сети является 129.64.0.0, а номером узла — 0.0.134.5 (поскольку адрес относится к классу В).

Если же использовать маску, то 17 последовательных двоичных единиц в маске 255.255.128.0, «наложенные» на IP-адрес 129.64.134.5, делят его на две части, номер сети:

10000001.01000000.1

и номер узла:

0000110.00000101.

В десятичной форме записи номера сети и узла, дополненные нулями до 32 бит, выглядят соответственно как 129.64.128.0 и 0.0.6.5.

Наложение маски можно интерпретировать как выполнение логической операции И (AND). Так, в предыдущем примере номер сети из адреса 129.64.134.5 является резуль­татом выполнения логической операции AND с маской 255.255.128.0:

10000001 01000000 10000110 00000101

AND

11111111.11111111.10000000.00000000

Для стандартных классов сетей маски имеют следующие значения:

· класс А - 11111111.00000000.00000000. 00000000 (255.0.0.0);

· класс В - 11111111.11111111. 00000000. 00000000 (255.255.0.0);

· классС-11111111. 11111111.11111111.00000000(255.255.255.0).

Механизм масок широко распространен в маршрутизации IP, причем маски могут использоваться для самых разных целей, С их помощью администратор может разбивать одну, выделенную ему поставщиком услуг сеть определенного класса на несколько других, не требуя от него дополнительных номеров сетей — эта операция называется разделением на подсети (subnetting). На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов — такая операция называется объединением подсетей (supernetting). Подробнее об этом мы поговорим при изучении технологии бесклассовой междоменной маршрутизации.

 


Порядок назначения IP-адресов

 

По определению схема IP-адресации должна обеспечивать уникальность нумерации сетей, а также уникальность нумерации узлов в пределах каждой из сетей. Следовательно, процедуры назначения номеров как сетам, так и узлам сетей должны быть централизованным. Рекомендуемый порядок назначения IP-адресов дается в спецификации RFC 2050.

 

Назначение адресов автономной сети

 

Когда дело касается сети, являющейся частью Интернета, уникальность нумерации может быть обеспечена только усилиями специально созданных для этого центральных органов. В небольшой же автономной IP-сети условие уникальности номеров сетей и узлов может быть выполнено силами сетевого администратора.

В этом случае в распоряжении администратора имеется все адресное пространство, так как совпадение IP-адресов в не связанных между собой сетях не вызовет никаких отрицательных последствий, Администратор может выбирать адреса произвольным образом, соблюдая лишь синтаксические правила и учитывая ограничения на особые адреса. (Таким образом, номер узла в технологии TCP/IP назначается независимо от его локального адреса.)

Однако при таком подходе исключена возможность в будущем подсоединить данную сеть к Интернету. Действительно, произвольно выбранные адреса данной сети могут совпасть с централизовано назначенными адресами Интернета. Для того чтобы избежать коллизий, связанных с такого рода совпадениями, в стандартах Интернета определено несколько диапазонов так называемых частных адресов, рекомендуемых для автономного использования:

  • в классе А сеть 10.0.0.0;
  • в классе В диапазон из 16 номеров сетей (172.16.0.0-172.31.0.0);
  • в классе С диапазон из 255 сетей (192.168.0.0-192.168.255.0).

Эти адреса, исключенные из множества централизованно распределяемых, составляют огромное адресное пространство, достаточное для нумерации узлов автономных сетей практически любых размеров. Заметим также, что частные адреса, как и при произвольном выборе адресов, в разных автономных сетях могут совпадать. В то же время использование частных адресов для адресации автономных сетей делает возможным корректное подключение их к Интернету. Применяемые при этом специальные технологии подключения исключают коллизии адресов.

Централизованное распределение адресов

 

В больших сетях, подобных Интернету, уникальность сетевых адресов гарантируется централизованной, иерархически организованной системой их распределения. Номер сети может быть назначен только по рекомендации специального подразделения Интернета. Главным органом регистрации глобальных адресов в Интернете с 1998 года является неправительственная некоммерческая организация ICANN (Internet Corporation for Assigned Names and Numbers). Эта организация координирует работу региональных отделов деятельность которых охватывает большие географические площади: ARIN — Америка, RIPE (Европа), APNIC (Азия и Тихоокеанский регион). Региональные отделы выделяют блоки адресов сетей крупным поставщикам услуг, а те, в свою очередь, распределяют их между своими клиентами, среди которых могут быть и более мелкие поставщики.

Проблемой централизованного распределения адресов является их дефицит. Уже сравнительно давно очень трудно получить адрес класса В и практически невозможно стать обладателем адреса класса А. При этом надо отметить, что дефицит обусловлен не только ростом сетей, но и тем, что имеющееся адресное пространство используется нерационально. Очень часто владельцы сетей класса С расходуют лишь небольшую часть из имеющихся у них 254 адресов. Рассмотрим пример, когда две сети необходимо соединить глобальной связью. В таких случаях в качестве линии связи используют два маршрутизатора, соединенных по двухточечной схеме (рис. 15.4). Для вырожденной сети, образованной линией связи, связывающей порты двух смежных маршрутизаторов, приходится выделять отдельный номер сети, хотя в этой сети всего два узла.

Рис. 15.4. Нерациональное использование пространства IP-адресов

 

Для смягчения проблемы дефицита адресов разработчики стека TCP/IP предлагают разные подходы. Принципиальным решением является переход на новую версию протокола IP — протокол IPv6, в котором резко расширяется адресное пространство. Однако и текущая версия протокола IP (IPv4) поддерживает технологии, направленные на боли экономное расходование IP-адресов, такие, например, как NAT и CIDR.

 

Адресация и технология CIDR

 

Технология бесклассовой междоменной маршрутизации (Classless Inter-Domain Route CIDR), которая описана в документах RFC 1517, RFC 1518, RFC 1519, RFC 1520 и о которой впервые было официально объявлено в 1993 году, позволяет центрам распределения адресов избежать выдачи абонентам излишних адресов.

Деление IP-адреса на номера сети и узла в технологии CIDR происходит на основе маски переменной длины, назначаемой поставщиком услуг. Непременным условием применимости CIDR является наличие у организации, распоряжающейся адресами, непрерывных диапазонов адресов. Такие адреса имеют одинаковый префикс, то есть одинаковую цифровую последовательность в нескольких старших разрядах. Пусть в распоряжении некоторого поставщика услуг имеется непрерывное пространство IP-адресов в количестве 2n (рис. 15.5). Отсюда следует, что префикс имеет длину (32 - n) разрядов. Оставшиеся n разрядов играют роль счетчика последовательных номеров.

Рис. 15.5. Распределение адресов на основе технологии CIDR

 

Когда потребитель обращается к поставщику услуг с просьбой о выделении ему некоторого числа адресов, то в имеющемся пуле адресов «вырезается» непрерывная область 51,52 или 53, в зависимости от требуемого количества адресов. При этом должны быть выполнены следующие условия;

  • количество адресов в выделяемой области должно быть равно степени двойки;
  • начальная граница выделяемого пула адресов должна быть кратна требуемому количеству узлов.

Очевидно, что префикс каждой из показанных на рисунке областей имеет собственную длину — чем меньше количество адресов в данной области, тем длиннее ее префикс.

ПРИМЕР

Пусть поставщик услуг Интернета располагает пулом адресов в диапазоне 193.20.0.0-193.23.255.255 (1100 0001.0001 0100.0000 0000.0000 0000-1100 0001.0001 0111.1111 1111.1111 1111), то есть количество адресов равно 218. Соответственно префикс поставщика услуг имеет длину 14 разрядов — 1100 0001.0001 01, или в другом виде — 193.20/14.

Если абоненту этого поставщика услуг требуется совсем немного адресов, например 13, то поставщик мог бы предложить ему различные варианты: сеть 193.20.30.0/28, сеть 193.20.30,16/28 или сеть 193.21.204.48/28. Во всех случаях в распоряжении абонента для нумерации узлов имеются 4 младших бита, Таким образом, наименьшее число, удовлетворяющее потребностям абонента (13), которое можно представить степенью двойки (24), является 16. Префикс для каждого из выделяемых пулов во всех этих случаях играет роль номера сети, он имеет длину 32-4-28 разрядов.

Рассмотрим другой вариант, когда к поставщику услуг обратился крупный заказчик, сам, воз­можно, собирающийся оказывать услуги по доступу в Интернет. Ему требуется блок адресов в 4000 узлов. На нумерацию такого количества узлов пойдет 12 двоичных разрядов, следова­тельно, размер выделенного пула адресов оказывается несколько больше требуемого - 4096. Граница, с которой должен начинаться выделяемый участок, должна быть кратна размеру. участка, то есть это могут быть любые адреса из следующих: 193,20.0.0,193.20,16.0,193,20.32.0, 193.20.48,0 и другие числа оканчивающиеся ил 12 нулей. Пусть поставщик услуг предложил потребителю диапазон адресов 193.20.10.0 193.20,31.253. Для этого диапазона агрегированный номер сети (префикс) имеет длину 20 двоичных разрядов и равен 193.20.16.0/20.

Благодаря CIDR поставщик услуг получает возможность «нарезать» блоки из выделенного ему адресного пространства в соответствии с действительными требованиями каждого клиента.

 


Отображение IP-адресов на локальные адреса

 

Одной из главных задач, которая ставилась при создании протокола IP, являлось обеспечение совместной согласованной работы в сети, состоящей из подсетей, в общем случи использующих разные сетевые технологии. Взаимодействие технологии TCP/IP с локальными технологиями подсетей происходит многократно при перемещении IP-пакета в составной сети. На каждом маршрутизаторе протокол IP определяет, какому следующее маршрутизатору в этой сети надо направить пакет. В результате решения этой задачи протоколу IP становится известен IP-адрес интерфейса следующего маршрутизатора (или конечного узла, если эта сеть является сетью назначения). Чтобы локальная технология сети смогла доставить пакет на следующий маршрутизатор, необходимо:

  • упаковать пакет в кадр соответствующего для данной сети формата (например Ethernet);
  • снабдить данный кадр локальным адресом следующего маршрутизатора.

Решением этих задач, как уже отмечалось, занимается уровень сетевых интерфейсов стека TCP/IP.

Протокол разрешения адресов

 

Как уже было сказано, никакой функциональной зависимости между локальным адресом и его IP-адресом не существует, следовательно, единственный способ установления соответствия — ведение таблиц. В результате конфигурирования сети каждый интерфейс «знает» свои IP-адрес и локальный адрес, что можно рассматривать как таблицу, состоящую из одной строки. Проблема состоит в том, как организовать обмен имеющейся информацией между узлами сети.

Для определения локального адреса по IP-адресу используется протокол разрешения адресов (Address Resolution Protocol, ARP). Протокол разрешения адресов реализуется различным образом в зависимости от того, работает ли в данной сети протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещания или же какой-либо из протоколов глобальной сети (Frame Relay, ATM), которые, как правило, не поддерживают широковещательный доступ.

Рассмотрим работу протокола ARP в локальных сетях с широковещанием.

На рис. 15.6 показан фрагмент IP-сети, включающий две сети — Ethernet (из трех конечных узлов Л, В и С) и Ethernet2 (из двух конечных узлов D и Е), Сети подключены соответ­ственно к интерфейсам 1 и 2 маршрутизатора. Каждый сетевой интерфейс имеет IP-адрес и МАС-адрес. Пусть в какой-то момент IP-модуль узла С направляет пакет узлу D. Протокол IP узла С определил IP-адрес интерфейса следующего маршрутизатора — это IP1. Теперь, прежде чем упаковать пакет в кадр Ethernet, и направить его маршрутизатору, необходимо определить соответствующий МАС-адрес. Для решения этой задачи протокол IP обращается к протоколу ARP. Протокол ARP поддерживает на каждом интерфейсе сетевого адаптера или маршрутизатора отдельную ARP-таблицу, в которой в ходе функционирования сети накапливается информация о соответствии между IP-адресами и МАС-адресами других интерфейсов данной сети. Первоначально, при включении компьютера или маршрутизатора в сеть все его ARP-таблицы пусты.

  1. На первом шаге происходит передача от протокола IP протоколу ARP примерно такого сообщения: «Какой МАС-адрес имеет интерфейс с адресом IP1;
  2. Работа протокола ARP начинается с просмотра собственной ARP-таблицы. Предположим, что среди содержащихся в ней записей отсутствует запрашиваемый IP-адрес;
  3. В этом случае исходящий IP-пакет, для которого оказалось невозможным определить локальный адрес из ARP-таблицы, запоминается в буфере, а протокол ARP формирует ARP-запрос, вкладывает его в кадр протокола Ethernet и широковещательно рассылает;
  4. Все интерфейсы сети Ethernet1 получают ARP-запрос и направляют его «своему» протоколу ARP. ARP сравнивает указанный в запросе адрес IP1 с IP-адресом интерфейса, на который поступил этот запрос. Протокол ARP, который констатировал совпадение (в данном случае это ARP маршрутизатора 1), формирует ARP-ответ.

В ARP-ответе маршрутизатор указывает локальный адрес MAC1 своего интерфейса и отправляет его запрашивающему узлу (в данном примере узлу С), используя его локальный адрес. Широковещательный ответ в этом случае не требуется, так как формат ARP-запроса предусматривает ноля локального и сетевого адресов отправителя. Заметим, что зона распространения ARP-запросов ограничивается сетью Ethernet1, так как на пути широко вещательных кадров барьером стоит маршрутизатор.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.