Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Архитектура и стандартизация сетей 3 страница



 

Сети масштаба предприятия

 

Сети масштаба предприятия, или корпоративные сети, отличаются тем, что в них на первый план выходят информационные услуги. Если сети операторов связи могут и не предоставлять информационных услуг, так как компьютеры пользователей находятся за пределами зоны их ответственности, то корпоративные сети не могут себе этого позволить. Настольные компьютеры пользователей и серверы являются неотъемлемой частью любой корпоративной сети, поэтому и разработчики, и специалисты по обслуживанию корпора­тивных сетей должны это учитывать. Можно сказать, что корпоративная сеть представляет собой пример инфокоммуникационной сети, где соблюдается паритет между двумя типа­ми услуг. Корпоративную сеть можно представить в виде «островков» локальных сетей, «плавающих» в телекоммуникационной среде.

Другой особенностью корпоративной сети является се масштабность. Сеть уровня отдела или здания редко называют корпоративной, хотя формально это так. Обычно название «корпоративная» применяют только для сети, включающей большое количество сетей масштаба отдела и здания, расположенных в разных городах и объединенных глобальными связями.

Число пользователей и компьютеров в корпоративной сети может измеряться тысячами, а число серверов — сотнями; расстояния между сетями отдельных территорий могут ока­заться такими, что использование глобальных связей становится необходимым (рис. 5.6). Для соединения удаленных локальных сетей и отдельных компьютеров в корпоративной сети применяются разнообразные телекоммуникационные средства, в том числе каналы первичных сетей, радиоканалы, спутниковая связь.

Непременным атрибутом столь сложной и крупномасштабной сети является высокая степень неоднородности (гетерогенности) — нельзя удовлетворить потребности тысяч пользователей с помощью однотипных программных и аппаратных средств. В корпора­тивной сети обязательно задействуют различные типы компьютеров — от мэйнфреймов до персональных компьютеров, несколько типов операционных систем и множества различных приложений. 11еоднородные части корпоративной сети должны работать как единое целое, предоставляя пользователям по возможности удобный и простой доступ ко всем необходимым ресурсам.

Рис. 5.6. Пример корпоративной сети

 

Появление корпоративных сетей — это хорошая иллюстрация известного философского постулата о переходе количества в качество. При объединении в единую сеть отдельных сетей крупного предприятия, имеющего филиалы в разных городах и даже странах, многие количественные характеристики объединенной сети превосходят некоторый критический порог, за которым начинается новое качество. В этих условиях существующие методы и подходы к решению традиционных задач сетей меньших масштабов для корпоративных сетей оказались непригодными. На первый план вышли такие задачи и проблемы, которые в сетях рабочих групп, отделов и даже кампусов либо имели второстепенное значение, либо вообще не проявлялись. Примером может служить простейшая (для небольших сетей) задача — ведение учетных данных о пользователях сети.

Наиболее простой способ ее решения — помещение учетных данных всех пользователей в локальную базу учетных данных каждого компьютера, к ресурсам которого эти поль­зователи должны иметь доступ. При попытке доступа данные извлекаются из локальной учетной базы и на их основе доступ предоставляется или не предоставляется. Для небольшой сети, состоящей из 5-10 компьютеров, этот подход работает очень хорошо. Но если в сети насчитывается несколько тысяч пользователей, каждому из которых нужен доступ к нескольким десяткам серверов, очевидно, что это решение становится крайне неэффективным. Администратор должен повторить несколько десятков раз (по числу серверов) операцию занесения учетных данных каждого пользователя. Сам пользователь также вынужден повторять процедуру логического входа каждый раз, когда ему нужен доступ к ресурсам нового сервера. Хорошее решение этой проблемы для крупной сети — исполь­зование централизованной справочной системы, в базе данной которой хранятся учетные записи всех пользователей сети. Администратор один раз выполняет операцию занесения данных пользователя в базу, а пользователь один раз выполняет процедуру логического входа, причем не в отдельный сервер, а в сеть целиком.

При переходе от более простого типа сетей к более сложному — от сетей отдела к корпоративной сети — географические расстояния увеличиваются, поддержание связи компью­теров становится все более сложным и дорогостоящим. По мере увеличения масштабов сети повышаются требования к ее надежности, производительности и функциональным возможностям. По сети циркулируют все возрастающие объемы данных, и сеть должна обеспечивать их безопасность и защищенность наряду с доступностью. Все это приводит к тому, что корпоративные сети строятся на основе наиболее мощного и разнообразного оборудования и программного обеспечения.

 

Интернет

 

Интернет представляет собой не только уникальную сеть, но и уникальное явление современной цивилизации. Изменения, причиной которых стал Интернет, многогранной Гипертекстовая служба WWW изменила способ представления информации человеку собрав на своих страницах все популярные ее виды — текст, графику и звук. Транспорт Интернета — недорогой и доступный практически всем предприятиям (а через телефонные сети и одиночным пользователям) — существенно облегчил задачу построения территориальной корпоративной сети, одновременно выдвинув на первый план проблему защиты корпоративных данных при их передаче через в высшей степени общедоступную сеть с многомиллионным «населением». Стек TCP/IP, на котором строится Интернет, стал самым популярным.

Интернет неуклонно движется к тому, чтобы стать общемировой сетью интерактивного взаимодействия людей. Он начинает все больше и больше использоваться не только для распространения информации, в том числе рекламной, но и для осуществления самих деловых операций — покупки товаров и услуг, перемещения финансовых активов и т. п. Это в корне меняет для многих предприятий саму канву ведения бизнеса, поскольку измени поведение клиентов, значительная часть которых предпочитает совершать электронные сделки.

 

Уникальность Интернета

 

Уникальность Интернета проявляется во многих отношениях.

Прежде всего, это самая большая в мире сеть', по числу пользователей, по территории покрытия, по суммарному объему передаваемого трафика, по количеству входящих в ее состав сетей. Темпы роста Интернета, хотя и снизились по сравнению с периодом Интернет-революции середины 90-х годов, остаются очень высокими и намного превышают темпы роста телефонных сетей.

Интернет — это сеть, не имеющая единого центра управления и в то же время работающая по единым правилам и предоставляющая всем своим пользователям единый набор услуг. Интернет — это «сеть сетей», но каждая входящая в Интернет сеть управляется независимым оператором - поставщиком услуг Интернета (Internet Service Provider, ISP), или провайдером. Некоторые центральные органы существуют, но они отвечают только за единую техническую политику, за согласованный набор технических стандартов, за централизованное назначение таких жизненно важных для гигантской составной сети параметров, как имена и адреса компьютеров и входящих в Интернет сетей, но не за ежедневное поддержание сети в работоспособном состоянии. Такая высокая степень децентрализации имеет свои достоинства и недостатки.

Достоинства проявляются, например, в легкости наращивания Интернета. Так, новому поставщику услуг достаточно заключить соглашение, по крайней мере, с одним из существующих провайдеров, после чего пользователи нового провайдера получают доступ ко всем ресурсам Интернета. Негативные последствия децентрализации заключаются в сложности модернизации технологий и услуг Интернета. Такие коренные изменения требуют согласованных усилий всех поставщиков услуг, в случае «одного собственника они проходили бы намного легче. Недаром многие новые технологии пока применяются только в пределах сети одного поставщика, примером может быть технология групповой рассылки, которая очень нужна для эффективной организации аудио- и видеовещания через Интернет, но все еще пока не может преодолеть границы, разделяющие сети различных провайдеров. Другой пример — не очень высокая надежность услуг Интернета, так как никто из поставщиков не отвечает за конечный результат, например за доступ клиента Л к сайту В, если они находятся в сетях разных поставщиков.

Интернет — недорогая сеть. Например, популярность сравнительно новой услуги Интер­нета — интернет-телефонии — во многом объясняется существенно более низкими тари­фами доступа в Интернет по сравнению с тарифами традиционных телефонных сетей. За низкой стоимостью стоит не временное снижение цен в надежде завоевать новый рынок, а вполне объективная причина — более низкая стоимость транспортной инфраструктуры Интернета как сети с коммутацией пакетов по сравнению с инфраструктурой телефон­ных сетей. Существуют, конечно, опасения, что по мере усовершенствования технологий и услуг доступ в Интернет будет обходиться все дороже и дороже. Эту опасность осознают и разработчики технологий Интернета, и поставщики услуг, проверяя каждое нововведение и с этой позиции.

Интернет не стал бы тем, чем он стал, если бы не еще одна его уникальная черта — необъятное информационное наполнение и простота доступа к этой информации для всех пользователей Интернета. Мы имеем в виду те сотни тысяч терабайтов информации, которые хранятся на веб-серверах Интернета и доступны пользователям Интернета в форме веб-страниц. Удобная форма представления взаимосвязей между отдельными информационными фрагментами в виде гиперссылок и стандартный графический браузер, который одинаково просто и эффективно работает во всех популярных операционных системах, совершили революцию. Интернет стал быстро заполняться самой разнообразной инфор­мацией в форме веб-страниц, превращаясь одновременно в энциклопедию, ежедневную газету, рекламное агентство и огромный магазин. Многие люди сегодня не представляют своей жизни без регулярного использования Интернета и для переписки со знакомыми, и для поиска информации (которая, как правило, нужна срочно), и для поиска работы и для оплаты счетов.

Структура Интернета

 

Стремительный рост числа пользователей Интернета, привлекаемых информацией, содер­жащейся на его сайтах, изменил отношение корпоративных пользователей и операторов связи к этой сети. Сегодня Интернет поддерживается практически всеми традиционными операторами связи. Кроме того, к ним присоединилось большое количество новых опера­торов, построивших свой бизнес исключительно на услугах Интернета. Поэтому общая структура Интернета, показанная на рис. 5.7, во многом является отражением общей струк­туры всемирной телекоммуникационной сети, фрагмент которой мы уже рассматривали на рис. 5.3.

Рис. 5.7. Структура Интернета

 

Магистральные поставщики услуг являются аналогами транснациональных операторов связи. Они обладают собственными транспортными магистралями, покрывающими круп­ные регионы (страна, континент, весь земной шар). Примерами магистральных поставщи­ков услуг являются такие компании, как Cable & Wireless, WorldCom, Global One. Соответственно, региональные поставщики услуг оказывают услуги Интернета в рамках определенного региона (штат, графство, округ — в зависимости от принятого в той или иной стране административного деления), а локальные поставщики услуг работают, как правило, в пределах одного города.

Связи между поставщиками услуг строятся на основе двухсторонних коммерческих согла­шений о взаимной передаче трафика. Такие соглашения называют пиринговыми (от англ. peering — соседственный). Магистральный оператор обычно имеет пиринговые соглашения со всеми остальными магистральными операторами (так как их немного), а региональные операторы, как правило, заключают такие соглашения с одним из магистральных опера­торов и с несколькими другими региональными операторами.

Для того чтобы провайдерам было проще организовывать свои пиринговые связи, в Ин­тернете существуют специальные центры обмена трафиком, в которых соединяются сети большого количества провайдеров. Такие центры обмена обычно называются Internet exchange (IX), или Network Access Point (NAP).

Центр обмена трафиком является средством реализации пиринговых связей, для этого он предоставляет поставщикам услуг помещение и стойки для установки коммутационного оборудования. Все физические и логические соединения между своим оборудованием поставщики услуг выполняют самостоятельно. Это значит, что не все сети провайдеров, которые пользуются услугами некоторого центра обмена данными, автоматически обме­ниваются трафиком друг с другом, обмен происходит между сетями только в том случае, когда между провайдерами заключено пиринговое соглашение и они его реализовали в данном центре обмена.

 

Классификация провайдеров Интернета по видам оказываемых услуг

 

Общий термин провайдер, или поставщик услуг, Интернета (Internet Service Provider, ISP) обычно относят к компаниям, которые выполняют для конечных пользователей лишь транспортную функцию — обеспечивают передачу их трафика в сети других по­ставщиков.

Поставщиком интернет-контента (Internet Content provider, ICP) называют такого провай­дера, который имеет собственные информационно-справочные ресурсы, предоставляя их содержание — контент (content) — в виде веб-сайтов. Многие поставщики услуг Интернета являются одновременно поставщиками интернет-контента.

Поставщик услуг хостинга (Hosting Service Provider, HSP) — это компания, которая предоставляет свое помещение, свои каналы связи и серверы для размещения контента, созданного другими предприятиями.

Поставщики услуг по доставке контента (Content Delivery Provider, CDP) — это пред­приятия, которые не создают информационного наполнения, а занимаются доставкой шонтента в многочисленные точки доступа, максимально приближенные к пользователям, что позволяет повысить скорость доступа пользователей к информации.

Поставщики услуг по поддержке приложений (Application Service Provider, ASP) предо­ставляют клиентам доступ к крупным универсальным программным продуктам, которые самим пользователям сложно поддерживать. Обычно это корпоративные пользователи, которых интересуют приложения класса управления предприятием, такие как SAP R3.

Так как Интернет стал уже явлением социальной жизни, растет количество поставщиков. предоставляющих сугубо специализированные услуги, например поставщики биллин-говых услуг (Billing Service Provider, BSP) обеспечивают оплату счетов по Интернету, сотрудничая с муниципальными службами и поставщиками тепла и электроэнергии.

 

Выводы

 

Классификация компьютерных сетей может быть выполнена на основе различных критериев. Это могут быть технологические характеристики сетей, такие как топология, метод коммутации, метод продвижения пакетов, тип используемой среды передачи, Сети классифицируют и на основе других признаков, не являющихся технологическими, таких, например, как отношение собственности (частные, государственные, общественные), тип потребителей предоставляемых услуг (сети операторе* и корпоративные сети), функциональная роль (магистраль, сеть доступа).

Компьютерные сети предоставляют услуги двух типов; информационные и транспортные. Часто поя термином «сетевые услуги» понимают транспортные услуги, считая, что основной функцией сети является передача информации. Информационные услуги предоставляются конечными узлами сети — серверами, а транспортные — промежуточными узлами, которыми являются коммутаторы и маршрутизаторы сети.

Компьютерную сеть можно описать с помощью обобщенной структуры, которая справедлива для любой телекоммуникационной сети. Такая обобщенная структура состоит из сетей доступа, маги­страли и информационных центров.

Специализированное предприятие, которое создает телекоммуникационную сеть для оказания общедоступных услуг, владеет этой сетью и поддерживает ее работу, называется оператором связи.

Операторы связи отличаются друг от друга набором предоставляемых услуг, территорией, в пределах которой предоставляются услуги, типом клиентов, на которых ориентируются их услуги, а также имеющейся во владении оператора инфраструктурой — линиями связи, коммутационным оборудованием, информационными серверами и т. п. Операторов связи, специализирующихся на предоставлении услуг компьютерных сетей, обычно называют поставщиками услуг.

Корпоративная сеть — это сеть, главным назначением которой является поддержание работы конкретного предприятия, владеющего сетью. Пользователями корпоративной сети являются толmrj сотрудники данного предприятия.

Интернет является уникальной компьютерной сетью, предоставляющей разнообразные услуги во всемирном масштабе.

 


Стандартизация протоколов локальных сетей

 

В институте IEEE был организован комитет 802 стандартизации технологий LAN. Результатом работы комитета IEEE 802 стало принятие семейства стандартов IEEE 802.x, содержащих рекомендации по проектированию нижних уровней локальных сетей. Эти стандарты базировались на обобщении популярных фирменных стандартов, в частности Ethernet и Token Ring.

Комитет IEEE 802 сегодня является основным международным органом, разрабатывающим стандарты технологий локальных сетей, в том числе коммутируемых локальных сетей, а также стандарты беспроводных локальных сетей на разделяемой среде.

Структуру стандартов IEEE 802 иллюстрирует рис. 12.3.

Рис. 12.3. Структура стандартов IEEE 802.x

 

Помимо индивидуальных для каждой технологии уровней существует и общий уровень, который был стандартизован рабочей группой 802.2.

Появление этого уровня связано с тем, что комитет 802 разделил функции канального уровня модели OSI на два уровня:

· управление логическим каналом (Logical Link Control, LLC);

· управление доступом к среде (Media Access Control, MAC).

Основными функциями уровня MAC являются:

· обеспечение доступа к разделяемой среде;

· передача кадров между конечными узлами посредством функций и устройств физического уровня.

Если уровень MAC специфичен для каждой технологии и отражает различия в методах доступа к разделяемой среде, то уровень LLC представляет собой обобщение функций разных технологий по обеспечению передачи кадра с различными требованиями к надежности.

Логика образования общего для всех технологий уровня LLC заключается в следующем, после того как узел сети получил доступ к среде в соответствии с алгоритмом, специфическим для конкретной технологии, дальнейшие действия узла или узлов по обеспечению надежной передачи кадров от технологии не зависят.

Так как в зависимости от требований приложения может понадобиться разная степени надежности, то рабочая группа 802.2 определила три типа услуг:

· Услуга LLC1 — это услуга без установления соединения и без подтверждения получения данных. LLC1 дает пользователю средства для передачи данных с минимумом издержек. В этом случае LLC поддерживает дейтаграммный режим работы, как и MAC, так что и технология LAN в целом работает в дейтаграммиом режиме.

· Услуга LLC2 дает пользователю возможность установить логическое соединение перед началом передачи любого блока данных и, если это требуется, выполнить процедур восстановления после ошибок и упорядочивание потока блоков в рамках установленого соединения.

· Услуга LLC3 — это услуга без установления соединения, но с подтверждением получения данных. В некоторых случаях (например, при использовании сетей в системах реального времени, управляющих промышленными объектами), с одной стороны, временные издержки установления логического соединения перед отправкой данных неприемлемы, а с другой стороны, подтверждение о корректности приема переданных данных необходимо. Для такого рода ситуаций и предусмотрена дополнительная услуга LLC3, которая не предусматривает установление логического соединения, но обеспечивает подтверждение получения данных.

 


Ethernet со скоростью 10 Мбит/с на разделяемой среде

 

MAC-адреса

 

На уровне MAC, который обеспечивает доступ к среде и передачу кадра, для идентификации сетевых интерфейсов узлов сети используются регламентированные стандартом IEEE 802.3 уникальные 6-байтовые адреса, называемые МАС-адресами. Обычно МАC-адрес записывают в виде шести пар шестнадцатеричных цифр, разделенных тире или двоеточиями, например 11-A0-17-3D-BC-01. Каждый сетевой адаптер имеет, по крайней мере, один МАС-адрес.

Помимо отдельных интерфейсов, МАС-адрес может определять группу интерфейсов или даже все интерфейсы сети. Первый (младший) бит старшего байта адреса назначения является признаком того, что адрес является индивидуальным или групповым. Если он равен 0, то адрес является индивидуальным, то есть идентифицирует один сетевой интерфейсу, а если 1, то групповым. Групповой адрес связан только с интерфейсами, сконфигурированными (вручную или автоматически по запросу вышележащего уровня) как члены группы, номер которой указал в групповом адресе. Если сетевой интерфейс включен в группу, то наряду с уникальным МАС-адресом с ним ассоциируется еще один адрес — групповой. И в частном случае, если групповой адрес состоит из всех единиц, то есть имеет шестнадцатеричное представление OxFEFFFFFFFFFF, он идентифицирует все узлы сети и называется широковещательным.

Второй бит старшего байта адреса определяет способ назначения адреса - централизованный или локальный. Если этот бит равен 0 (что бывает почти всегда в стандартной аппаратуре Ethernet), это говорит о том, что адрес назначен централизованно по правилам IEEE 802.

Комитет IEEE распределяет между производителями оборудования так называемый организационно уникальный идентификатор (Organizationally Unique Identifier). Каждый производитель помещает выделенный ему идентификатор в три старших байта адреса (например, идентификатор 0x0020AF определяет компанию 3COM, а 0x00000С-Cisco). За уникальность младших трех байтов адреса отвечает производитель оборудоваиия. Двадцать четыре бита, отводимые производителю для адресации интерфейсов его продукции, позволяют выпустить примерно 16 миллионов интерфейсов под одним идентификатором организации. Уникальность централизованно распределяемых адресов распространяется на все основные технологии локальных сетей — Ethernet, Token Ring, FDDI и т. д. Локальные адреса назначаются администратором сети, в обязанности которого входит обеспечение их уникальности.

Сетевые адаптеры Ethernet могут также работать в так называемом режиме неразборчивого захвата (promiscuous mode), когда они захватывают все кадры, поступающие на интерфейс, независимо от их МАС-адресов назначения. Обычно такой режим используется для мониторинга трафика, когда захваченные кадры изучаются затем для нахождения причины некорректного повеления некоторого узла или отладки нового протокола.

 

Форматы кадров технологии Ethernet

 

Существует несколько стандартов формата кадра Ethernet, На практике в оборудовании Ethernet используется только один формат кадра, а именно кадр Ethernet DIX, который иногда называют кадром Ethernet II по номеру последнего стандарта DIX. Этот формат представлен на рис. 12.5.

|

 

Рис. 12.5. Формат кадра Ethernet DIX (II)

 

Первые два поля заголовка отведены под адреса:

· DA (Destination Address) MAC-адрес узла назначения;

· SA (Source Address) — МАС-адрсс узла отправителя. Для доставки кадра достаточно одного адреса — адреса назначения; адрес источника помещается в кадр для того, чтобы узел, получивший кадр, знал, от кого пришел кадр и кому нужно на него ответить. Принятие решения об ответе не входит в компетенцию протокола Ethernet, это дело протоколов верхних уровней. Ethernet же только выполнит такое действие, если с сетевого уровня поступит соответствующее указание.

· Поле Т (Туре, или EtherType) содержит условный код протокола верхнего уровня, данные которого находятся в поле данных кадра, например шестнадцатеричпос значение 08-00 соответствует протоколу IP. Это поле требуется для поддержки интерфейсных функций мультиплексирования и демультиплексирования кадров при взаимодействии с протоколами верхних уровней.

· Поле данных может содержать от 46 до 1500 байт. Если длина пользовательских данных меньше 46 байт, то это поле дополняется до минимального размера байтами заполнения. Эта операция требуется для корректной работы метода доступа Ethernet (он рассматривается в следующем разделе).

· Поле контрольной последовательности кадра (Frame Check Sequence, FCS) состоит из 4 байт контрольной суммы. Это значение вычисляется по алгоритму CRC-32.

Кадр Ethernet DIX (II) не отражает разделения канального уровня Ethernet на уровень MAC и уровень LLC: его поля поддерживают функции обоих уровней, например иптерфейсные функции поля Готносятся к функциям уровня LLC, в то время как все остальные поля поддерживают функции уровня MAC.

Существуют еще три стандартных формата кадра Ethernet:

· Кадр 802.3/LLC является стандартом комитета IEEE 802 и построен в соответствии с принятым разбиением функций канального уровня на уровень MAC и уровень LLC. Поэтому результирующий кадр является вложением кадра LLC, определяемого стандартом 802.2, в кадр MAC, определяемого стандартом 802.3.

· Кадр Raw 802.3, или Novell 802.3, появился в результате усилий компании Novell по ускорению разработки своего стека протоколов в сетях Ethernet.

· Кадр Ethernet SNAP стал результатом деятельности комитета 802.2 по приведению предыдущих форматов кадров к некоторому общему стандарту и приданию кадру необходимой гибкости для учета в будущем возможностей добавления полей или изменения их назначения.

Как уже было сказано, в настоящее время оборудованием Ethernet используются толькв кадры Ethernet DIX (II). Остальные форматы кадров, в том числе кадр 802.3/LLC, по-прежнему формально являющийся стандартным, вышли из употребления из-за более сложного формата, который оказался не нужен в условиях существования единой технологии канального уровня.

 

Доступ к среде и передача данных

 

Метод доступа, используемый в сетях Ethernet па разделяемой проводной среде, носит название CSMA/CD (Carrier Sense Multiple Access with Collision Detection — прослушивание несущей частоты с множественным доступом и распознаванием коллизий).

Все компьютеры в сети на разделяемой среде имеют возможность немедленно (с учетом задержки распространения сигнала в физической среде) получить данные, которые любой из компьютеров начал передавать в общую среду. Говорят, что среда, к которой подключены все станции, работают в режиме коллективного доступа (Multiply Access, MA).

Чтобы получить возможность передавать кадр, интерфейс-отправитель должен убедится, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая еще называется несущей частотой (Carrier Sense, CS),

Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц в зависимости от последователыюся единиц и нулей, передаваемых в данный момент.

Если среда свободна, то узел имеет право начать передачу кадра. В примере, показанном на рис. 12.6, узел 1 обнаружил, что среда свободна, и начал передавать свой кадр. В коаксиальном кабеле сигналы передатчика узла 1 распространяются в обе стороны, так что их получают все узлы сети. Кадр данных всегда сопровождается преамбулой, которая состоит из 7 байт, каждый из которых имеет значение 10101010, и 8-го байта, равного 10101011. Последний байт носит название ограничителя начала кадра. Преамбула нужна для вхождения приемника в побитовую и побайтовую синхронизацию с передатчиком. Наличие двух единиц, идущих подряд, говорит приемнику о том, что преамбула закончилась и следующий бит является началом кадра.

Рис. 12,6. Метод случайного доступа CSMA/CD

 

Все станции, подключенные к кабелю, начинают записывать байты передаваемого кадра в свои внутренние буферы. Первые 6 байт кадра содержат адрес назначения. Та станция, которая узнает собственный адрес в заголовке кадра, продолжает записывать его содержимое в свой внутренний буфер, а остальные станции на этом прием кадра прекращают. Станция назначения обрабатывает полученные данные и передает их вверх по своему стеку. Кадр Ethernet содержит не только адрес назначения, но и адрес источника данных, поэтому станция-получатель знает, кому нужно послать ответ.

Узел 2 во время передачи кадра узлом 1 также пытался начать передачу своею кадра, однако обнаруживает, что среда занята — на ней присутствует несущая частота, — поэтому узел 2 вынужден ждать, пока узел 1 не прекратит передачу кадра.

После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу, равную межпакстному интервалу (Inter Packet. Gap, 1PG) в 9,6 мкс. Эта пауза нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна. В приведенном примере узел 2 дождался окончания передачи кадра узлом 1, сделал паузу в 9,6 мке и пачал передачу своего кадра.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.