Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Из чего состоит компьютер?



Любой IBM PC-совместимый компьютер представляет собой реализацию так называемой фон-неймановской архитектуры вычислительных машин. Эта ар­хитектура была представлена Джорджем фон Нейманом (George von Neumann) еще в 1945 году и имеет следующие основные признаки. Машина состоит из блока управления, арифметико-логического устройства (АЛУ), памяти и уст­ройств ввода-вывода. В ней реализуется концепция хранимой программы: про­граммы и данные хранятся в одной и той же памяти. Выполняемые действия определяются блоком управления и АЛУ, которые вместе являются основой центрального процессора. Центральный процессор выбирает и исполняет ко­манды из памяти последовательно, адрес очередной команды задается «счетчи­ком адреса» в блоке управления. Этот принцип исполнения называется после-довательной передачей управления. Данные, с которыми работает программа, могут включать переменные — именованные области памяти, в которых сохра­няются значения с целью дальнейшего использования в программе. Фон-ней­мановская архитектура — не единственный вариант построения ЭВМ, есть и другие, которые не соответствуют указанным принципам (например, потоко­вые машины). Однако подавляющее большинство современных компьютеров основаны именно на указанных принципах, включая и сложные многопроцес­сорные комплексы, которые можно рассматривать как объединение фон-нейма­новских машин. Конечно же, за более чем полувековую историю ЭВМ класси­ческая архитектура прошла длинный путь развития. Тем не менее ПК можно «разложить по полочкам» следующим образом.

Центральный процессор (АЛУ с блоком управления) реализуется микропро­цессором семейства х86 — от 8086/88 до новейших процессоров Pentium, Ath­lon и Opteron (и это не конец истории). При всей внутренней суперскалярности, суперконвейеризированности и спекулятивности (см. главу 7) современного процессора внешне он соблюдает вышеупомянутый принцип последовательной передачи управления. Набор арифметических, логических и прочих инструк­ций насчитывает несколько сотен, а для потоковой обработки придуман прин­цип SIMD (Single Instruction Multiple Data — множество комплектов данных, обрабатываемых одной инструкцией), по которому работают расширения ММХ, 3DNow!, SSE. Процессор имеет набор регистров, часть которых доступ­на для хранения операндов, выполнения действий над ними и формирования адреса инструкций и операндов в памяти. Другая часть регистров используется процессором для служебных (системных) целей, доступ к ним может быть огра­ничен (есть даже программно-невидимые регистры). Все компоненты компьюте­ра представляются для процессора в виде наборов ячеек памяти или/и портов ввода-вывода, в которые процессор может записывать и/или из которых может считывать содержимое.

Память «расползлась» по многим компонентам. Оперативная память (ОЗУ) — самый большой массив ячеек памяти со смежными адресами — реализуется, как правило, на модулях (микросхемах) динамической памяти. Для повышения производительности обмена данными (включая и считывание команд) опера­тивная память кэшируется сверхоперативной памятью (см. 7.3). Два уровня кэ­ширования территориально располагаются в микропроцессоре. Оперативная память вместе с кэшем всех уровней (в настоящее время — до трех) представля­ет собой единый массив памяти, непосредственно доступный процессору для записи и чтения данных, а также считывания программного кода. Помимо опе­ративной память включает также постоянную (ПЗУ), из которой можно только считывать команды и данные, и некоторые виды специальной памяти (напри­мер, видеопамять графического адаптера). Вся эта память (вместе с оператив­ной) располагается в едином пространстве с линейной адресацией. В любом компьютере обязательно есть энергонезависимая память, в которой хранится программа начального запуска компьютера и минимально необходимый набор сервисов (ROM BIOS).

Процессор (один или несколько), память и необходимые элементы, связываю­щие их между собой и с другими устройствами, называют центральной частью,или ядром, компьютера (или просто центром). То, что в фон-неймановском компьютере называлось устройствами ввода-вывода (УВВ), удобнее называть периферийными устройствами.

Периферийные устройства (ПУ) — это все программно-доступные компоненты компьютера, не попавшие в его центральную часть. Их можно разделить по на­значению на несколько классов:

Устройства хранения данных (устройства внешней памяти) — дисковые
(магнитные, оптические, магнитооптические), ленточные (стримеры), твер­
дотельные (карты, модули и USB-устройства на флэш-памяти). Эти устрой­
ства используются для сохранения информации, находящейся в памяти, на
энергонезависимых носителях и загрузки этой информации в оперативную
память. В каком виде хранится информация на этих устройствах, нам не так
уж важно (главное — правильно считать то, что сохранили).

Устройства ввода-вывода служат для преобразования информации из внут­
реннего представления компьютера (биты и байты) в форму, понятную ок­
ружающим,
и обратно. Под окружающими подразумеваются человек (и другие
биологические объекты) и различные технические устройства (компьютер
можно приспособить для управления любым оборудованием, были бы дат­
чики и исполнительные устройства). В какую форму эти устройства преоб­
разуют двоичную информацию — определяется их назначением.

Коммуникационные устройства служат для передачи информации между
компьютерами и/или их частями. Сюда относят модемы (проводные, радио,
оптические, инфракрасные...), адаптеры локальных и глобальных сетей. В дан­
ном случае преобразование формы представления информации требуется толь­
ко для передачи ее на расстояние.

Процессор, память и периферийные устройства взаимодействуют между собой с помощью шин и интерфейсов, аппаратных и программных; стандартизация интерфейсов делает архитектуру компьютеров открытой.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.