Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Обратные матрицы и детерминанты



Если матрица Аявляется квадратной и невырожденной, уравнения AX = IиXA = Iимеют одинаковое решение X. Это решение называется матрицей обратной к A, обозначается через A-1 и вычисляется при помощи функции inv. Понятие детерминанта (определителя) матрицы полезно при теоретических выкладках и некоторых типах символьных вычислений, но его масштабирование и неизбежные ошибки округления делают его не столь привлекательным при числовых вычислениях. Тем не менее, если это требуется, функция det вычисляет определитель квадратной матрицы. Например,

 

A = pascal (3)

A =

1 1 1

1 2 3

1 3 6

d = det (A)

X = inv (A)

d =

X =

3 -3 1

-3 5 -2

1 -2 1

 

Опять таки, поскольку A является симметричной матрицей целых чисел и имеет единичный определитель, то же самое справедливо и для обратной матрицы. С другой стороны, для

 

B = magic(3)

B =

8 1 6

3 5 7

4 9 2

d = det(B)

X = inv(B)

d =

-360

X =

0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056

-0.0194 0.1889 -0.1028

Внимательное изучение элементов матрицы X, или использование формата rational , показы-вает, что они являются целыми числами, разделенными на 360.

Если матрица A является квадратной и несингулярной, то, пренебрегая ошибками округле-ния, выражение X = inv(A)*Bтеоретически означает то же, что и X = A\B, аY = B*inv(A) теоретически есть то же, что и Y = B/A. Однако вычисления включающие операторы \ и / более предпочтительны, поскольку требуют меньше рабочего времени, меньшей памяти и имеют лучшие свойства с точки зрения определения ошибок.

Псевдообратные матрицы

Прямоугольные матрицы не имеют детерминантов и обратных матриц. Для таких матриц по крайней мере одно из уравнений AX = Iили XA = Iне имеет решения. Частично данный про-бел восполняетсятак называемой псевдообратной матрицей Мура-Пенроуза, или просто псевдообратной матрицей, которая вычисляется при помощи функции pinv. На практике необходимость в этой операции встречается довольно редко. Желающие могут всегда обра-титься к соответствующим справочным пособиям.

Степени матриц и матричные экспоненты

Положительные целые степени

Если Аесть некоторая квадратная матрица, а р – положительное целое число, тоA^p эквива-лентно умножению A на себя рраз.

 

X = A^2

X =

3 6 10

6 14 25

10 25 46

Отрицательные и дробные степени

Если Аявляется квадратной и невырожденной, то A^(-p) эквивалентно умножению inv(A) на себя p раз.

 

Y = B^(-3)

Y =

0.0053 -0.0068 0.0018

-0.0034 0.0001 0.0036

-0.0016 0.0070 -0.0051

Дробные степени, например A^(2/3), также допускаются; результаты при этом зависят от ра-спределения собственных значений матрицы А.

 

 

Поэлементное возведение в степень

Оператор .^ (с точкой !) осуществляет поэлементное возведение в степень. Например,

 

X = A.^2

A =

1 1 1

1 4 9

1 9 36

Вычисление корня квадратного из матрицы и матричной экспоненты

 

Для невырожденных квадратных матриц Афункция sqrtmвычисляет главное значение квад-ратного корня , т.е. если X = sqrtm(A), то X*X = A .Буква mв sqrtmозначает, что выпол-няется матричная операция. Это отличает данную функцию от sqrt(A),которая, подобно A.^(1/2) (обратите внимание на точку !), выполняет операцию извленчения корня поэлемен-тно.

Система обыкновенных линейных дифференциальных уравнений первого порядка может быть записана в виде

dx/dt = Ax

где x = x(t)есть векторная функция от t,а Aесть постоянная матрица не зависящая отt.

Решение данной системы может быть выражено в виде матричной экспоненты.

 

x(t) = ℮Atx(0)

Функция expm(A)вычисляет матричную экспоненту. Рассмотрим пример системы диффере-нциальных уравнений со следующей 3х3 матрицей коэффициентов

 

A =

0 -6 -1

6 2 -16

-5 20 -10

 

и начальными условиями x(0)

 

x0 = [ 1 1 1]’.

 

Использование матричной экспоненты для вычисления решения дифференциального уравне-ния в 101 точке с шагом 0.01 на интервале 0 ≤ t ≤ 1 записывается в виде

 

X = [ ];

for t = 0 : 0.01 : 1

X = [X expm(t*A)*x0];

End

Трехмерный график решения в фазовом пространстве может быть получен при помощи спе-циальной функции

Plot3(X(1,:), X(2,:), X(3,:), '-o')

Решение имеет вид спиральной функции сходящейся к началу координат (см. рис. ниже). Та-кое решение обусловлено комплексными собственными значениями матрицы коэффициен-тов А.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.