Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Переопределенные системы



 

Переопределенные системы совместных линейных уравнений часто встречаются в задачах аппроксимации экспериментальных данных при помощи различных эмпирических кривых. Рассмотрим следующий гипотетический пример. Величина yизмеряется при различных зна-чениях времениt, что дает следующие результаты

 

T y

0.0 0.82

0.3 0.72

0.8 0.63

1.1 0.60

1.6 0.55

2.3 0.50

 

Эти данные могут быть введены в MATLAB при помощи выражений:

 

t = [0 .3 .8 1.1 1.6 2.3]';

y = [0.82 0.72 0.63 0.60 0.55 0.50]';

 

Данные могут быть аппроксимированы при помощи убывающей экспоненциальной функ-ции.

 

y(t) = c1 + c2 e-t

 

Это уравнение показывает, что вектор yможет быть представлен в виде линейной комбина-ции двух векторов, один из которых является постоянным вектором, содержащим все едини-цы, а второй вектор имеет компоненты e-t. Неизвестные коэффициенты c1 иc2 могут быть найдены подгонкой кривых по методу наименьших квадратов,которая основана на миними-зации суммы квадратов отклонений экспериментальных данных от модели. Мы имеем шесть уравнений с двумя неизвестными, представленными 6х2 матрицей

 

E = [ones(size(t)) exp(-t)]

E =

1.0000 1.0000

1.0000 0.7408

1.0000 0.4493

1.0000 0.3329

1.0000 0.2019

1.0000 0.1003

Решение методом наименьших квадратов находится при помощи оператора \ :

 

c = E\y

c =

0.4760

0.3413

 

Иными словами, подгонка методом наименьших квадратов дает

 

y(t) = 0.476 + 0.3413 e-t

 

Следующие выражения оценивают модель при равномерно распределенных моментах време-ни (с шагом 0.1), а затем строят график вместе с результатами экспериментальных данных.

 

T = (0 : 0.1 : 2.5)';

Y = [ones(size(T)) exp(-T)]*c;

Plot(T, Y, '-', t, y, 'o')

 

Можно видеть, что значения E*c не совсем точно совпадают со значениями эксперименталь-ных данных y, но эти отклонения могут быть сравнимы с ошибками измерений.

Прямоугольная матрица A называется матрицей неполного ранга, если ее столбцы линейно-независимы. Если матрица Aимеет неполный ранг, то решение AX = Bне является единст-венным. Оператор \ при этом выдает предупреждающее сообщение и определяет основное решение, которое дает минимально возможное число ненулевых решений.

Недоопределенные системы

Недоопределенные системы линейных уравнений содержат больше неизвестных чем урав-нений. Когда они сопровождаются дополнительными ограничениями, то становятся сферой изучения линейного программирования. Сам по себе, оператор \ работает только с системой без ограничений. При этом решение никогда не бывает единственным. MATLAB находит ос-новное решение, которое содержит по меньшей мере m ненулевых компонент (где m - число уравнений), но даже это решение может быть не единственным. Ниже приводится пример, где исходные данные генерируются случайным образом.

R = fix (10*rand(2,4))

R =

6 8 7 3

3 5 4 1

b = fix (10*rand(2,1))

b =

Система уравнений Rx = bсодержит два уравнения с четырьмя неизвестными. Поскольку матрица коэффициентов R содержит небольшие по величине целые числа, целесообразно представить решение в формате rational (в виде отношения двух целых чисел). Частное ре-шение представленное в указанном формате есть:

 

p = R\b

p =

5/7

-11/7

Одно из ненулевых решений есть p(2), потому что второй столбец матрицы Rимеет наи-большую норму. Вторая ненулевая компонента естьp(4) поскольку четвертый столбец матрицы Rстановится доминирующим после исключение второго столбца (решение нахо-дится методом QR-факторизации с выбором опорного столбца).

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.