Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Цифрова модуляція на ортогональних несучих, боротьба з багатопроменевим прийманням.Смирнов Є. М



При частотном разделении каналов необходимо, чтобы ширина отдельного канала была, с одной стороны, достаточно узкой для минимизации искажения сигнала в пределах отдельного канала, а с другой - достаточно широкой для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно как можно более плотно расположить частотные подканалы, но при этом избежать межканальной интерференции, чтобы обеспечить полную независимость каналов друг от друга. Частотные каналы, удовлетворяющие перечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов (а точнее, функции, описывающие эти сигналы) ортогональны друг другу. С точки зрения математики ортогональность функций означает, что их произведение, усреднённое на некотором интервале, должно быть равно нулю. В нашем случае это выражается простым соотношением:

 

 

где T - период символа, fk,fl - несущие частоты каналов k и l.

 

Ортогональность несущих сигналов можно обеспечить в том случае, если за время длительности одного символа несущий сигнал будет совершать целое число колебаний. Примеры нескольких несущих ортогональных колебаний представлены на рис. 22.

 

Рис. 22.Ортогональные частоты.

 

Учитывая, что каждый передаваемый символ длительности T передаётся ограниченной по времени синусоидальной функцией, нетрудно найти и спектр такой функции (рис 23), который будет описываться функцией , где fi - центральная (несущая) частота i-го канала.

 

Рис. 23. Символ длительностью T и его спектр.

Такой же функцией описывается и форма частотного подканала. При этом важно, что хотя сами частотные подканалы могут и перекрывать друг друга, однако ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, отсутствие межканальной интерференции (рис. 24).

 

Рис. 24. Частотное разделение каналов с ортогональными несущими сигналами.

 

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM).

 

В системах широкополосного беспроводного доступа (ШБД) основным разрушающим фактором для цифрового канала являются помехи от многолучевого приема. Этот вид помех весьма характерен для эфирного приема в городах с разноэтажной застройкой из-за многократных отражений радиосигнала от зданий и других сооружений.

Радикальным решением этой проблемы является применение технологии ортогонального частотного мультиплексирования OFDM, которая специально разработана для борьбы с помехами при многолучевом приеме. Разновидность технологи - метод COFDM (сочетание канального кодирования, аббревиатура C, и OFDM) - хорошо известен и широко используется в цифровых системах радиовещания (DAB) в Европе, Канаде и Японии.

При OFDM последовательный цифровой поток преобразуется в большое число параллельных потоков (субпотоков), каждый из которых передается на отдельной несущей (см. рисунок).

Частотный разнос Δf между соседними несущими f1, f2 ... fn в групповом радиоспектре OFDM выбирается из условия возможности выделения в демодуляторе индивидуальных несущих. При этом возможно применение двух методов частотного разделения (демультиплексирования) несущих. Во-первых, с помощью полосовых фильтров и, во-вторых, с помощью ортогональных преобразований сигналов.

В первом случае частотный разнос между модулированными несущими выбирается таким, чтобы их соседние боковые полосы взаимно не перекрывались. Это условие будет выполнено, если величину частотного разноса выбрать равной Δf > 2/TU , где TU - рабочий интервал информационного символа. Однако при этом эффективность использования радиоспектра будет невысокой.

Напротив, стандарт OFDM характеризуется сильным перекрытием спектров соседних поднесущих, что позволяет уменьшить в два раза значение частотного разноса и во столько же раз повысить плотность передачи цифровой информации (бит/с)/Гц. Благодаря ортогональному методу демодуляции поднесущих группового спектра происходит компенсация помех от соседних частот, несмотря на то, что их боковые полосы взаимно перекрываются.

Для выполнения условий ортогональности необходимо, чтобы частотный разнос между несущими был постоянен и точно равен значению Δf = 1/TU, то есть на интервале TU должно укладываться целое число периодов разностной частоты f2 - f1. Выполнение этого соотношения достигается введением в модеме OFDM двух видов сигналов синхронизации: сигналов для синхронизации несущих частот группового спектра и сигналов для синхронизации тактовых частот функциональных блоков демодулятора.

Группа несущих частот, которая в данный момент времени переносит биты параллельных цифровых потоков, называется "символом OFDM". Благодаря тому, что используется большое число параллельных потоков, длительность символа в параллельных потоках оказывается существенно больше, чем в последовательном потоке данных. Это позволяет в декодере задержать оценку значений принятых символов на время, в течение которого изменения параметров радиоканала из-за действия эхо-сигналов прекратятся, и канал станет стабильным.

Таким образом, при OFDM временной интервал символа субпотока TS делится на две части - защитный интервал TG, в течение которого оценка значения символа в декодере не производится, и рабочий интервал символа TU, за время которого принимается решение о значении принятого символа. Для правильной работы системы эхоподавления необходимо, чтобы защитные интервалы находились в начале символов субпотоков, то есть в защитном интервале продолжается модуляция несущей предшествующим символом.

Технически метод OFDM реализуется путем выполнения инверсного дискретного преобразования Фурье (Fast Fourier Transform, FFT) в модуляторе передатчика и прямого дискретного преобразования Фурье - в демодуляторе приемника приемопередающего устройства.

Передатчик

Приёмник

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.