Случайная величина , принимающая целые значения от 1 до , имеет равномерное распределение, если
.
Найдем математическое ожидание и дисперсию равномерно распределенной случайной величины :
;
Пример. Имеется связка из 5 ключей, из которых только один подходит к открываемому замку. Найти распределение случайной величины – числа ключей, которые пришлось опробовать прежде, чем открыли замок.
Очевидно, может принимать значения от 1 до 5, вероятности которых можно вычислить так:
; .
Если , значит, опробованы 2 ключа. Данное событие представляет собой произведение двух событий: первый ключ не подошел, вероятность 4/5, второй подошел – вероятность 1/4.
Далее рассуждаем аналогично:
; ;
.
Биномиальное распределение ДСВ
Случайная величина , принимающая целые значения от 0 до , имеет биномиальное распределение, если
.
Такое распределение имеет случайная величина , равная числу осуществлений некоторого события А в серии из испытаний, в каждом из которых вероятность появления события А постоянна и равна . Числовые характеристики биномиального распределения можно найти по формулам:
.
Пример. В корзине 50 шаров, из них 10 черных. Достают 5 шаров, причем выборка осуществляется с возвращением. Охарактеризовать случайную величину Х — число обнаруженных в выборке шаров черного цвета.
Величина Х может принимать значения от 0 до 5, т. к. выборка проводится с возвращением, вероятность обнаружить всякий раз черный шар постоянна и равна 10/50 = 0,2. Вероятности каждого значения вычислим по формуле Бернулли:
, где .
Получим ряд распределения:
0,32768
0,4096
0,2048
0,0512
0,0064
0,00032
Найдем функцию распределения :
0,32768
0,73728
0,94208
0,99328
0,99968
Наивероятнейшее значение ( ) определяется из неравенства
или .
Целым значением, удовлетворяющим этим двум неравенствам, является = 1. Значит, , что видно и из ряда распределения.
Гипергеометрическое распределение ДСВ
Случайная величина Х имеет гипергеометрическое распределение, если
.
Такое распределение получается в следующей задаче. Имеется генеральная совокупность из объектов, в числе которых находится интересующих исследователей объектов. Из генеральной совокупности проводится выборка без возвращения объемом . Тогда случайная величина , равная числу интересующих нас объектов из совокупности , обнаруженных в выборке, имеет гипергеометрическое распределение.
Пример. Воспользуемся условием предыдущей задачи, считая, что выборка осуществляется без возвращения, и найдем закон распределения случайной величины , равной числу черных шаров в выборке.
Случайная величина может также меняться от 0 до 5. Вычислим вероятности каждого значения по формуле:
Составим ряд распределения
0,310563
0,431337
0,20984
0,044177
0,003965
0,000119
Как видим, вероятности отдельных значений Х несколько изменились по сравнению с их значениями, рассчитанными по формуле Бернулли.
Числовые характеристики гипергеометрического распределения:
В данном примере .
Формулой для математического ожидания можно воспользоваться для оценки размера генеральной совокупности, если непосредственно подсчитать число объектов в ней затруднительно. Такая ситуация возникает, если нужно знать, например, число животных в популяции, обитающей на какой-либо территории, число птиц в стае, рыб в замкнутом водоеме и т. п. В этом случае метят объектов из всей совокупности. Через некоторое время отбирают объектов и записывают количество меченых. Повторяя отбор несколько раз, находят среднее количество меченых объектов, которое можно принять равным . Зная , и можно найти .