Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Напомним, что мода – точка максимума дифференциальной функции распределения



В нашем случае: .

Коэффициент асимметрии отрицательный, следовательно “длинная часть” кривой, полученной на основании опытных данных, расположена слева от моды и средняя арифметическая левее моды (рисунок 3). Заметим, что в нашем случае коэффициент асимметрии близок к нулю.

 

Рисунок 3. Левосторонняя асимметрия.

 

Коэффициент эксцесса определяется по формуле:

Если ε*>0, то кривая имеет более высокую и острую вершину, чем нормальная кривая (островершинное распределение); если ε*<0, то сравниваемая кривая имеет более низкую и "плоскую" вершину, чем нормальная кривая (плосковершинное распределение).

Замечание: –2 < ε*< . Если ε* близок к –2, то кривая двухвершинная. При ε = –2 кривая распадается на 2 островершинные кривые, что говорит о неоднородности статистического материала.

В нашем случае: .

Коэффициент эксцесса отрицательный, следовательно, вершина кривой ряда распределения ниже, чем у кривой нормального распределения.

 

Рисунок 4. – Плосковершинное распределение.

 

 

6. ТОЧЕЧНЫЕ И ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ
ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ

 

Задачи математической статистики практически сводятся к оценке свойств генеральной совокупности по результатам случайной выборки.

Любую функцию от результатов выборочных наблюдений принято называть статистикой (выборочной характеристикой). Статистики обычно и используются для построения статистических оценок параметров генеральной совокупности, когда точные значения этих параметров нам неизвестны. Статистику , используемую как оценку параметра , называют точечной оценкой. Из точечных оценок в приложениях математической статистики наиболее часто используют среднюю арифметическую как оценку математического ожидания М(х)=а, выборочную дисперсию D* и среднее квадратическое отклонение , как оценки генеральной дисперсии D(x) и среднего квадратического отклонения .

В математической статистике в зависимости от задачи статистику рассматривают либо как СВ, либо как число (конкретную реализацию СВ). Возникает вопрос, каким требованиям должны отвечать точечные оценки, чтобы их можно было считать в каком–то определенном смысле "хорошими". Эти требования характеризуют понятиями несмещенности, состоятельности и эффективности.

Оценку называют несмещенной, если при любом объеме выборки n ее математическое ожидание равно оцениваемому параметру , то есть М( ) = . В случае большой выборки оценка параметра называется состоятельной, если по мере роста числа наблюдений n (то есть в случае конечной генеральной совокупности объемом N или при в случае бесконечной генеральной совокупности) она стремится к оцениваемому параметру .

Несмещенная оценка параметра называется эффективной, если среди прочих несмещенных оценок того же параметра она обладает наименьшей дисперсией.

Точечные оценки параметров генеральной совокупности в нашем примере:

Точечная оценка без указания степени точности и надежности малоинформативна, так как наблюдаемые значения статистики есть лишь значения СВ. Она может существенно отличаться от оцениваемого параметра при малом объеме выборки, что приводит к грубым ошибкам.

Интервальной оценкой параметра называют такой интервал , относительно которого можно утверждать с определенной, близкой к единице вероятностью , что он содержит неизвестное значение . Величину называют доверительной вероятностью или надежностью оценки параметра Θ: , – некоторые функции от результатов выборочных наблюдений . Разность 2 = между верхней и нижней границами доверительного интервала называют длиной доверительного интервала, а величину – точностью оценки.

Для построения интервальных оценок необходимо знать закон распределения статистики .

На практике закон распределения генеральной совокупности неизвестен. В этом случае пользуются приближенным методом построения доверительных интервалов, суть которого в следующем: если считать, что распределение выборочных характеристик в больших выборках асимптотически нормальное (для дисперсии это справедливо при n >100, а для средней арифметической при n > 30), то доверительные интервалы строятся следующим образом

где – оцениваемый параметр; * – выборочная оценка параметра; – число, определяемое из равенства

.

1. По таблице значений функции Лапласа

находят аргумент , которому соответствует значение функции Лапласа, равное . При .

– стандартные ошибки выборочной характеристики (главный член среднего квадратического отклонения).

 

 

Стандартные ошибки:

1) Выборочной средней . В нашем примере

2) Выборочной дисперсии

В примере

3) Выборочного среднеквадратического отклонения : .

В примере

4) Выборочного коэффициента асимметрии :

5) Выборочного коэффициента эксцесса

6) Выборочного коэффициента вариации :

7) Выборочной медианы

Построим доверительные интервалы для параметров генеральной совокупности нашего примера при .

1) Для математического ожидания:

.

2) Для дисперсии:

.

3) Для среднеквадратического отклонения:

.

4) Для коэффициента асимметрии:

.

5) Для коэффициента эксцесса:

.

6) Для коэффициента вариации:

.

7) Для медианы:

.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.