Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Судинно-волокнистий пучок у центральному осьовому циліндрі належить до радіального типу. В ньому по радіусам чергуються ділянки ксилеми і флоеми



У корені ксилема розвинена краще, ніж флоема. Вона досягає центра кореня і розходиться від нього променями. У двосім'ядоль­них рослин радіусів ксилеми звичайно два — п'ять, у односім'я­дольних — більше п'яти, що є діагностичною ознакою класів цих рослин. Флоема займає невеликі ділянки між променями ксилеми. В центрі кореня може бути одна або кілька судин, механічна тка­нина — склеренхіма, або, що буває значно рідше, основна парен­хіма. На відміну від стебла, в корені звичайно немає розвиненої серцевини.

63. Вторинна анатомічна будова кореня. У голонасінних і покрито­насінних двосім'ядольних у зоні закріплення корінь змінює будову з первинної анатомічної на вторинну (рис. 4.3), що зумовлено утворенням вторинних твірних тканин камбію і коркового кам­бію — фелогену.

Камбій утворюється з перициклу і клітин основної паренхіми, що знаходяться між флоемою і ксилемою; він розміщується зовні від ксилеми і напрямлений всередину від флоеми. Камбій формує багатопроменеву зірку, яка поступово вирівнюється в камбіальне кільце.

Внаслідок діяльності камбію зовні виникає вторинна флоема, всередині — вторинна ксилема, які, об'єднуючись, утворюють відкриті колатеральні судинно-волокнисті пучки. При цьому первин­на флоема відтісняється назовні і поступово руйнується або зали­шається зовні від вторинної флоеми у вигляді стиснених нефункціонуючих клітин. Первинна ксилема відтісняється до центру кореня і там залишається у вигляді зірочки (кількість її променів від двох до п'яти і залежить від кількості променів первинної ксилеми). Пучок від пучка відділяється серцевинними променями, які також утворюються внаслідок діяльності камбію, складаються з паренхімних, трохи радіальне подовжених клітин, останні з'єднують центр осьового циліндра з коровою частиною кореня. В клітинах серцевинних променів накопичуються запасні поживні речовини, можуть бути кристали оксалату кальцію тощо.

Внаслідок розростання центрального осьового циліндра ендодерма через тиск на неї нових вторинних тканин розривається і поступово руйнується. Первинна кора злущується разом з ендодермою, замість неї утворюється вторинна кора, яка займає значно менше місця, ніж первинна. Покривною тканиною стає перима, що утворюється фелогеном.

Вторинна будова кореня характеризується більш розвиненим центральним осьовим циліндром і незначною коровою частиною (рис. 4.3, б).

Діагностичною ознаки кореня, що вірізняютьїх від стебла є:

– наявність первинної ксилеми в центрі у вигляді зірочки з двома- п'ятьма променями;

– відсутність серцевини або її незначний розвиток лише в деяких рослин.

64. Роль кореня у забезпеченні мінерального живлення рослин
Ми вже знаємо, що саме корінь забезпечує надходження до рослини поживних речовин, насамперед з ґрунтового розчину. Ці процеси дістали назву мінеральне живлення (мал. 44). Крім мінеральних сполук, корінь може засвоювати з ґрунту й деякі органічні речовини. У складі сполук, які рослина поглинає з ґрунту, містяться майже всі необхідні рослинам поживні елементи. Лише вуглекислий газ засвоюється зеленими частинами рослин у процесі фотосинтезу (про це йтиметься далі).
Вода надходить через кореневі волоски і по клітинах кори кореня потрапляє до судин центрального осьового циліндра. Судинами кореня та стебла вода дістається усіх інших органів рослини. Разом із водою рухаються і розчинені в ній поживні речовини (мал. 44). Судинами вода підіймається завдяки присисній силі листків, яку розглянемо далі.
Поглинені мінеральні речовини рослина використовує для утворення складних органічних сполук: білків, нуклеїнових кислот, хлорофілу, інших пігментів тощо. Встановлено, що вміст у рослині таких елементів, як Нітроген, Фосфор, Калій, Сульфур, Магній, Ферум, становить від десятків до сотих часток відсотка. Вміст таких елементів,
як Цинк, Бор, Манган, Купрум, значно менший (десятитисячні й стотисячні частки відсотка).


Найважливішу роль у живленні рослин відіграє Нітроген. Він входить до складу таких життєво важливих для рослин сполук, як білки та нуклеїнові кислоти. Атмосфера Землі містить величезний запас азоту (близько 78% її об'єму), але газоподібний азот недоступний для рослин. Його можуть засвоювати лише деякі мікроорганізми, наприклад азотфіксуючі бактерії.
У тому, що сполуки Нітрогену необхідні для росту рослини, легко переконатися на такому досліді (мал. 45). Спробуйте виростити дві рослини, наприклад, соняшника. Одну з них - на повному поживному середовищі з усіма необхідними елементами, у тому числі й Нітрогеном,
а іншу - без нітрогеновмісних сполук. Поглянувши на малюнок 45, ви побачите, що в середовищі, позбавленому сполук Нітрогену, виростає маленька рослина (мал. 45, 1), хоча повітря навколо рослини містить значну кількість азоту. А в середовищі, де був достатній вміст Нітрогену, виросла рослина значно більших розмірів (мал. 45, 2). Отже, ми можемо зробити висновок: для росту і розвитку рослини важливий не газоподібний азот, а сполуки Нітрогену, що містяться в ґрунті. Тому, якщо в ґрунті цих сполук не вистачає, їх необхідно вносити у вигляді добрив.


Що таке добрива? Ми вже згадували, що в природі всі рештки живих організмів та продукти їхньої життєдіяльності потрапляють у ґрунт, де їх розкладають живі мешканці. Мінеральні сполуки, які утворилися при цьому, слугують для живлення рослин. Проте, вирощуючи культурні рослини, людина з врожаєм забирає більшу частину продукції рослин, яка у ґрунт не повертається. Це поступово виснажує ґрунт. Щоб кількість поживних речовин у ґрунті не зменшувалася, в нього вносять певні органічні та мінеральні речовини - добрива.
Органічні добрива - це продукти життєдіяльності або рештки живих організмів: перегній, гній, пташиний послід, торф, солома, компости тощо. Хімічна промисловість виробляє мінеральні добрива - нітратні, фосфатні та калійні. Найпоширенішими з нітратних добрив є калієва та амонійна селітри, з калійних - хлорид калію, а також деревна зола, з фосфатних - суперфосфати та інші. Використовують і бактеріальні добрива, які становлять собою препарати, що містять спори корисних живих мікроорганізмів - природних мешканців ґрунтів. Наприклад, азотобактерин містить бульбочкові бактерії, які оселяються в коренях гороху, конюшини, люпину та деяких інших рослин і забезпечують засвоєння азоту з повітря (мал. 46).


Мінеральні та органічні добрива значно впливають на ріст і розвиток рослин. Так, добрива, що містять сполуки Нітрогену, посилюють ріст
надземних частин рослин, а Калію - підземних. Сполуки Калію, Купруму та Фосфору підвищують холодостійкість рослин, а отже, допомагають їм переживати зимовий період. Сполуки Феруму та Магнію необхідні для синтезу хлорофілу. За нестачі цих сполук порушується утворення хлорофілу, листки стають блідо-зеленими або безбарвними, нездатними до фотосинтезу (мал. 47).


Пам'ятайте! Існують певні правила внесення добрив у ґрунт. Насамперед слід визначити їхню необхідну кількість. Надлишок певних елементів у ґрунті може так само несприятливо впливати на життєдіяльність рослин, як і їхня нестача. Органічні добрива зазвичай вносять у ґрунт восени. Це пов'язано з тим, що потрібен деякий час, щоб до весни вони під дією ґрунтових організмів розклалися до розчинних у воді мінеральних сполук, які здатні засвоювати рослини. Фосфатні добрива також вносять восени, бо вони погано розчиняються у воді, а нітратні та калійні - навесні, оскільки вони розчиняються краще.
Добрива вносять і під час росту рослин. Це називають підживленням. Підживлення буває сухе, коли добрива вносять у вигляді порошків чи гранул, та вологе - у вигляді розчинів.

65.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.