Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Полноценные и неполноценные аминокислоты



Белки (или протеины) являются важнейшими компонентами пищи (наряду с жирами, углеводами, витаминами, минералами и водой). По мнению специалистов, их доля в суточном рационе должна составлять 10 – 15%. Сегодня мы поговорим о строении, а также различных видах белков. Простые и сложные, животные и растительные, полноценные и неполноценные белки – в чем их отличие. Итак, обо всем по порядку…

 

Белки – это высокомолекулярные вещества, имеющие сложное строение. Мы не способны усваивать их в том виде, в каком они поступают вместе с пищей, так как для нас они являются чужими. Поэтому, попадая в организм, пищевые белки распадаются на небольшие структурные единицы - аминокислоты. Именно из аминокислот наш организм создает собственные, свойственные только ему белки, которые впоследствии использует на свои нужды. Как известно из белков состоит наша кожа, волосы, ногти, мышцы и т.д. Кроме того белки (протеины) являются неотъемлемой частью спортивного питания.

 

Всего насчитывается 20 аминокислот. В их состав входит кислород, водород, углерод, азот, иногда сера и фосфор. Часть аминокислот образуются в самом организме благодаря кишечным бактериям. Такие аминокислоты называются заменимыми. Но существуют также 8 незаменимых аминокислот:

 

 

· триптофан;

· лизин;

· валин;

· лейцин;

· изолейцин;

· фенилаланин;

· метионин;

· треонин;

· а также гистидин (для детей).

 

Незаменимые аминокислоты отсутствуют в организме, поэтому обязательно должны поступать вместе с пищевыми продуктами.

 

Стоит отметить, что в организме человека существует около 5 миллионов различных белков, каждый из которых выполняет свою конкретную функцию. Своим многообразием протеины обязаны именно аминокислотам. Последние, соединяясь друг с другом, образуют самые разнообразные комбинации. Рассмотрим более подробно виды белков:

 

1. Простые и сложные. Первые состоят только из аминокислот (белковой части), в состав же последних входит еще простетическая группа (небелковая часть).

 

2. Животные (мясо, рыба, птица, молочные продукты) и растительные (орехи, соя, горох, фасоль). При этом на животные белки должно приходится около 60%.

 

3. Полноценные и неполноценные белки. Полноценные белки включают все незаменимые аминокислоты, которые самостоятельно в организме не образуются. Полноценные белки содержатся в продуктах животного происхождения, а также некоторой растительной пище (горох, фасоль, соя). Стоит отметить, что самым ценным является белок куриного яйца, который содержит полный набор аминокислот в нужных пропорциях. Кроме того 200 г говядины или 200 г трески или 1,5 л молока способны обеспечить организм человека массой 70 кг всеми незаменимыми аминокислотами.

 

В неполноценных белках те или иные незаменимые аминокислоты содержатся в незначительных количествах либо же полностью отсутствуют. Многие растительные белки являются неполноценными, например, некоторые злаки (пшеница, ячмень и другие). Они бедны лизином, триптофаном, треонином и метионином. Для повышения биологической ценности хлеба в него добавляют лизин.

 

4. Глобулярные (имеют сферическую форму) и фибриллярные (имеют вытянутую нитевидную форму). Одни глобулярные белки такие, как альбумины и глобулины, содержатся в яичном белке, молоке, а также сыворотке крови. Источниками других, например, глютелинов и проламинов, служат растительные белки (пшеница, ячмень, кукуруза и другие).

 

Фибриллярные белки в основном являются животными белками и выполняют структурную функцию в организме. К ним относятся коллаген (белок хрящевой, костной и соединительной ткани), эластин (белок соединительной ткани мышц, связок и сосудов), кератины (белки кожи, волос и ногтей).

 

5. Высококачественные (мясо, рыба, птица, соя, яйца, сыр, молоко) и низкокачественные (картофель, макароны, рис, хлеб, орехи, бобы).

Азотистый баланс

Азотистый баланс - это соотношение количества азота, поступившего в организм с пищей и выделенного. Так как основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества поступившего и разрушенного в организме белка. А значит и о наличии или отсутствии мышечного роста.

Положительный азотистый баланс – это синоним анаболизма, а отрицательный азотистый баланс - синоним катаболизма.

Между количеством азота, введенного с белками пищи, и количеством азота, выводимым из организма, существует определенная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия.

Организм всегда стремится к постоянству (гомеостазу). Именно поэтому такое состояние равновесия характерно для абсолютного большинства людей. Если в этих условиях повысить количество белка в пище, то азотистый баланс вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистый баланс всегда стремится к равновесию. Это такое состояние, когда ничего не происходит. Ваш рост стоит на месте. Но и похудения нет.

В случаях, когда поступление азота превышает его выделение, говорят о положительном азотистом балансе. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при росте мышц и мышечной массы. Часто при этом говорят, что анаболизм (процесс роста) преобладает над катаболизмом (процессом распада).

Когда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азотистом балансе. Отрицательный азотистый баланс отмечается при белковом голодании, а также в случаях, когда в организм не поступают отдельные необходимые для синтеза белков аминокислоты.

Распад белка в организме протекает непрерывно. Степень распада белка обусловлена характером питания. Минимальные затраты белка в условиях белкового голодания наблюдаются при питании углеводами. В этих условиях выделение азота может быть в 3 раза меньше, чем при полном голодании. Углеводы при этом выполняют сберегающую белки роль.

Отрицательный азотистый баланс развивается при полном отсутствии или недостаточном количестве белка в пище, а также при потреблении пищи, содержащей неполноценные белки. Не исключена возможность дефицита белка при нормальном поступлении, но при значительном увеличении потребности в нем организма. Во всех этих случаях имеет место белковое голодание.

При белковом голодании даже в случаях достаточного поступления в организм жиров, углеводов, минеральных солей, воды и витаминов происходит постепенно нарастающая потеря массы тела, зависящая от того, что затраты мышечных белков не компенсируются поступлением белков с пищей. Особенно тяжело переносит белковое голодание растущий организм, у которого в этом случае происходит не только потеря массы тела, но и начинается катаболизм обусловленный недостатком пластического материала, необходимого для построения мышечных клеток.

 

6. Ферменты, свойства ферментов

Обмен веществ в организме можно определить как совокупность всех химических превращений, которым подвергаются соединения, поступающие извне. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции. Такие реакции протекают в организме с чрезвычайно большой скоростью только в присутствии катализаторов. Все биологические катализаторы представляют собой вещества белковой природы и носят названия ферменты (далее Ф) или энзимы (Е).

 

Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения. Ускорение реакции происходит за счет снижении энергии активации – того энергетического барьера, который отделяет одно состояние системы (исходное химическое соединение) от другого (продукт реакции).

 

Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО2 требует участия фермента, т.к. без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее.

 

Свойства ферментов

1. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.

 

2. Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.

Различают:

Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)

Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ.

 

Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которой зависит конформация активного центра, взаимодействующего с компонентами реакции.

 

Вещество, химическое превращение которого катализируется ферментом носит название субстрат (S).

 

3. Активность ферментов – способность в разной степени ускорять скорость реакции. Активность выражают в:

1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 мкМ субстрата за 1 мин.

2) Каталах (кат) – количество катализатора (фермента), способное превращать 1 моль субстрата за 1 с.

3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце.

4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.

 

Активность зависит в первую очередь от температуры. Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 °С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 °С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает (рис. 4.3.1.).

 

 

Активность ферментов зависит также от рН среды. Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна. Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности. Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7.0 – 7.2 образуется продукт, который является кислотой. При этом значение рН смещается в область 5,5 – 6.0. Активность фермента резко снижается, скорость образования продукта замедляется, но при этом активизируется другой фермент, для которого эти значения рН оптимальны и продукт первой реакции подвергается дальнейшему химическому превращению. (Еще пример про пепсин и трипсин).

 

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.